Bài 72 trang 62 SGK giải tích 12 nâng cao


Cho hàm số: a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho. b) Chứng minh rằng phương trình f(x) =0 có ba nghiệm phân biệt.

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số: \(f\left( x \right) = {1 \over 3}{x^3} - 2{x^2} + {{17} \over 3}\)

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \cr 
& f'\left( x \right) = {x^2} - 4x\cr&f'\left( x \right) = 0 \Leftrightarrow {x^2} - 4x = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x = 4 \hfill \cr} \right.\cr&f\left( 0 \right) = {{17} \over 3};\,f\left( 4 \right) = - 5 \cr} \)

Hàm số đồng biến trên các khoảng (-∞,0) và (4; +∞)

Hàm số nghịch biến trên khoảng (0; 4)

Hàm số đạt cực đại tại x = 0; y=y(0)=17/3

Hàm số đạt cực tiểu tại x = 4, yCT=y(4)=-5

\(\eqalign{
& f''\left( x \right) = 2x - 4\cr&f''\left( x \right) = 0 \Leftrightarrow x = 2 \cr 
& f\left( 2 \right) = {1 \over 3} \cr} \)

Điểm uốn \(I\left( {2;{1 \over 3}} \right)\)

Đồ thị nhận I làm tâm đối xứng.

Đồ thị:

LG b

Chứng minh rằng phương trình f(x) =0 có ba nghiệm phân biệt.

Lời giải chi tiết:

Quan sát đồ thị ta thấy, đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt nên phương trình f(x) =0 có ba nghiệm phân biệt.

Cách khác:

Hàm số đã cho có giá trị cực đại và giá trị cực tiểu trái dấu, tức hai điểm cực đại và cực tiểu của đồ thị nằm về hai phía đối với trục hoành do đó đồ thị hàm số cắt trục hoành tại ba điểm phân biệt nên phương trình f(x) =0 có ba nghiệm phân biệt.

Loigiaihay.com


Bình chọn:
3.5 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài