
Cho hàm số: \(f\left( x \right) = {1 \over 3}{x^3} - 2{x^2} + {{17} \over 3}\)
LG a
Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \cr
& f'\left( x \right) = {x^2} - 4x\cr&f'\left( x \right) = 0 \Leftrightarrow {x^2} - 4x = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 4 \hfill \cr} \right.\cr&f\left( 0 \right) = {{17} \over 3};\,f\left( 4 \right) = - 5 \cr} \)
Hàm số đồng biến trên các khoảng (-∞,0) và (4; +∞)
Hàm số nghịch biến trên khoảng (0; 4)
Hàm số đạt cực đại tại x = 0; yCĐ=y(0)=17/3
Hàm số đạt cực tiểu tại x = 4, yCT=y(4)=-5
\(\eqalign{
& f''\left( x \right) = 2x - 4\cr&f''\left( x \right) = 0 \Leftrightarrow x = 2 \cr
& f\left( 2 \right) = {1 \over 3} \cr} \)
Điểm uốn \(I\left( {2;{1 \over 3}} \right)\)
Đồ thị nhận I làm tâm đối xứng.
Đồ thị:
LG b
Chứng minh rằng phương trình f(x) =0 có ba nghiệm phân biệt.
Lời giải chi tiết:
Quan sát đồ thị ta thấy, đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt nên phương trình f(x) =0 có ba nghiệm phân biệt.
Cách khác:
Hàm số đã cho có giá trị cực đại và giá trị cực tiểu trái dấu, tức hai điểm cực đại và cực tiểu của đồ thị nằm về hai phía đối với trục hoành do đó đồ thị hàm số cắt trục hoành tại ba điểm phân biệt nên phương trình f(x) =0 có ba nghiệm phân biệt.
Loigiaihay.com
Cho hàm số a) Tìm điều kiện đối với p và q để hàm số f có một cực đại và một cực tiểu. b) Chứng minh rằng nếu giá trị cực đại và giá trị cực tiểu trái dấu thì phương trình: có ba nghiệm phân biệt. c) Chứng minh rằng điều kiện cần và đủ để phương trình (1) có ba nghiệm phân biệt là:
Cho hàm số: a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số. b) Viết phương trình tiếp tuyến của đồ thị tại điểm uốn U của nó. c) Gọi là đường thẳng đi qua điểm U và có hệ số góc m. Tìm các giá trị của m sao cho đường thẳng cắt đồ thị của hàm số đã cho tại ba điểm phân biệt.
Cho hàm số: a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2. b) Tìm các giá trị của m sao cho đồ thị của hàm số cắt trục hoành tại bốn điểm, tạo thành ba đoạn thẳng có độ dài bằng nhau.
Cho hàm số a) Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho. b) Từ đồ thị của hàm số y = f(x) suy ra cách vẽ đồ thị của hàm số
Cho hàm số: a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m =1. b) Chứng minh rằng với mọi , các đường cong đều đi qua hai điểm cố định A và B.
a) Vẽ đồ thị (P) của hàm số và đồ thị (H) của hàm số . b) Tìm giao điểm của hai đường cong (P) và (H). Chứng minh rằng hia đường cong đó có tiếp tuyến chung tại giao điểm của chúng. c) Xác định các khoảng trên đó (P) nằm phía trên hoặc phía dưới (H).
Cho hàm số : a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tiếp tuyến của đường cong (C) tại điểm cắt tiệm cận đứng và tiệm cận xiên tại hai điểm A và B. Chứng minh rằng M là trung điểm của đoạn thẳng AB và tam giác OAB có diện tích không phụ thuộc vào vị trí điểm M trên đường cong (C).
Chu vi của một tam giác là 16cm, độ dài một cạnh tam giác là 6cm. Tìm độ dài hai cạnh còn lại của tam giác sao cho tam giác có diện tích lớn nhât.
Người ta định làm một cái hộp hình trụ bằng tôn có thể tích V cho trước. Tìm bán kính đáy r và chiều cao của hình trụ sao cho tốn ít nguyên liệu nhất.
Xét chiều biến thiên và tìm cực trị (nếu có) của các hàm số sau:
Chứng minh các bất đẳng thức sau:
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: