Bài 49 trang 108 SBT Hình học 10 Nâng cao


Giải bài tập Bài 49 trang 108 SBT Hình học 10 Nâng cao

Đề bài

Viết phương trình đường tròn tiếp xúc với trục hoành tại điểm \(A(6 ; 0)\) và đi qua điểm \(B(9 ; 9)\).

Lời giải chi tiết

Đường tròn \((C)\) tâm \(I(a; b)\), bán kính \(R\) có phương trình:

\({(x - a)^2} + {(y - b)^2} = {R^2}\).

\((C)\) tiếp xúc với \(Ox\) tại \(A(6 ; 0)\) nên \(a=6, |b|=R\). Khi đó

\((1)   \Leftrightarrow   {(x - 6)^2} + {(y - b)^2} = {b^2}\).

\(B(9 ; 9)   \in (C) \)

\(\Rightarrow   {(9 - 6)^2} + {(9 - b)^2} = {b^2}\)

\( \Leftrightarrow  b = 5  \Rightarrow   R = 5\).

Phương trình của \((C)\) là \({(x - 6)^2} + {(y - 5)^2} = 25\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4. Đường tròn.

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài