Bài 47 trang 107 SBT Hình học 10 Nâng cao


Giải bài tập Bài 47 trang 107 SBT Hình học 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho ba điểm \(A(-1 ; 0), B(2 ; 4), C(4 ; 1).\)

LG a

Chứng minh rằng tập hợp các điểm \(M\) thỏa mãn \(3M{A^2} + M{B^2} = 2M{C^2}\) là một đường tròn \((C)\). Tìm tọa độ tâm và bán kính của \((C)\).

Lời giải chi tiết:

Xét điểm \(M(x ; y)\). Biến đổi điều kiện \(3M{A^2} + M{B^2} = 2M{C^2}\)qua tọa độ ta được phương trình đường tròn cần tìm  \((C): {\left( {x +  \dfrac{9}{2}} \right)^2} + {\left( {y - 1} \right)^2} =  \dfrac{{107}}{4}\), \((C)\) có tâm \(I\left( { -  \dfrac{9}{2} ; 1} \right)\), bán kính \(R =  \dfrac{{\sqrt {107} }}{2}\).

LG b

Một đường thẳng \(\Delta \) thay đổi đi qua \(A\) cắt \((C)\) tại \(M\) và \(N\). Hãy viết phương trình của \(\Delta \) sao cho đoạn \(MN\) ngắn nhất.

Lời giải chi tiết:

(h.104).

\(IA < R\) nên \(A\) trong \((C)\). Gọi \(H\) là trung điểm của \(MN\) thì \(IH \bot MN\).

\(MN = 2MH = 2\sqrt {{R^2} - I{H^2}} \).

Do đó \(MN\) min \( \Leftrightarrow IH\) max.

Ta luôn có \(IH \le IA\). Vậy \(IH\) max  \( \Leftrightarrow   H \equiv A\), tức là \(\overrightarrow {IA}  = \left( { \dfrac{7}{2} ;  - 1} \right)\) là  một vectơ pháp tuyến của đường thẳng \(\Delta \) cần tìm. Từ đó suy ra phương trình của \(\Delta \) là \(7x - 2y + 7 = 0\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.