
LG a
Tính khoảng cách từ điểm M(2; 3; 1) đến đường thẳng \(\Delta \) có phương trình \({{x + 2} \over 1} = {{y - 1} \over 2} = {{z + 1} \over { - 2}}\).
Phương pháp giải:
Khoảng cách từ điểm M đến đường thẳng \(\Delta\) là
\(d = {{\left| {\left[ {\overrightarrow u ;\overrightarrow {{M_0}M} } \right]} \right|} \over {\left| {\overrightarrow u } \right|}}\)
Lời giải chi tiết:
Đường thẳng \(\Delta \) đi qua \({M_0}\left( { - 2;1; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {1;2; - 2} \right)\)
Ta có \(\overrightarrow {{M_0}M} = \left( {4;2;2} \right)\) \(\left[ {\overrightarrow u ;\overrightarrow {{M_0}M} } \right] = \left( {8; - 10; - 6} \right)\).
Vậy khoảng cách cần tìm là \(d = {{\left| {\left[ {\overrightarrow u ;\overrightarrow {{M_0}M} } \right]} \right|} \over {\left| {\overrightarrow u } \right|}}\) \( = {{\sqrt {{8^2} + {{(-10)}^2} + {(-6)^2}} } \over {\sqrt {{1^2} + {2^2} + {(-2)^2}} }} = {{10\sqrt 2 } \over 3}\).
LG b
Tính khoảng cách từ điểm \(N\left( {2;3; - 1} \right)\) đến đường thẳng \(\Delta \) đi qua điểm \({M_0}\left( { - {1 \over 2};0; - {3 \over 4}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 4;2; - 1} \right)\).
Lời giải chi tiết:
Ta có \(\overrightarrow {{M_0}N} = \left( {{5 \over 2};3; - {1 \over 4}} \right)\)
\(\left[ {\overrightarrow u ;\overrightarrow {{M_0}N} } \right] = \left( {{5 \over 2}; - {7 \over 2};17} \right)\).
Vậy khoảng cách cần tìm là:
\(d = {{\left| {\left[ {\overrightarrow u ;\overrightarrow {{M_0}N} } \right]} \right|} \over {\left| {\overrightarrow u } \right|}} \) \(= {{\sqrt {{{\left( {{5 \over 2}} \right)}^2} + {{\left( {{-7 \over 2}} \right)}^2} + {{17}^2}} } \over {\sqrt {{4^2} + {2^2} + {1^2}} }} = {{\sqrt {2870} } \over {14}}\)
Loigiaihay.com
Tìm khoảng cách giữa hai đường thẳng sau:
Cho đường thẳng và mp(P) có phương trình: a) Xác định tọa độ giao điểm A của và (P). b) Viết phương trình đường thẳng đi qua A, nằm trong (P) và vuông góc với .
Cho đường thẳng d và mặt phẳng có phương trình: . a) Tìm góc giữa d và . b) Tìm tọa độ giao điểm của d và . c) Viết phương trình hình chiếu vuông góc của d trên .
Cho hai đường thẳng và . a) Chứng tỏ rằng hai đường thẳng đó chéo nhau. b) Viết phương trình mặt phẳng đi qua gốc tọa độ O và song song với và . c) Tính khoảng cách giữa hai đường thẳng và . d) Viết phương trình đường vuông góc chung của hai đường thẳng đó.
Viết phương trình đường thẳng song song với đường thẳng và cắt cả hai đường thẳng và , biết phương trình của và là:
Viết phương trình đường thẳng đi qua A và cắt cả hai đường thẳng sau:
Xác định vị trí tương đối giữa các cặp đường thẳng d và d’ cho bởi phương trình:
Cho đường thẳng và mặt phẳng . a) Tìm một vectơ chỉ phương của d và một điểm nằm trên d. b) Viết phương trình mặt phẳng đi qua d và vuông góc với mp(P). c) Viết phương trình hình chiếu vuông góc của d trên mp(P).
Viết phương trình hình chiếu vuông góc của đường thẳng trên mỗi mặt phẳng tọa độ.
Viết phương trình tham số, chính tắc (nếu có) của các đường thẳng sau đây:
Viết phương trình tham số và chính tắc (nếu có) của các đường thẳng sau đây:
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: