Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 3. Phương trình đường thẳng
Bài 32 trang 104 SGK Hình học 12 Nâng cao>
Cho đường thẳng d và mặt phẳng có phương trình: . a) Tìm góc giữa d và . b) Tìm tọa độ giao điểm của d và . c) Viết phương trình hình chiếu vuông góc của d trên .
Cho đường thẳng d và mặt phẳng \(\left( \alpha \right)\) có phương trình:
\(d:{{x - 2} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 5}\) \(\left( \alpha \right):2x + y + z - 8 = 0\).
LG a
Tìm góc giữa d và \(\left( \alpha \right)\).
Phương pháp giải:
Công thức tính góc giữa đường thẳng và mp: \(\sin \varphi = {{\left| {\overrightarrow u .\overrightarrow n } \right|} \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} \)
Lời giải chi tiết:
Đường thẳng d có vectơ chỉ phương \(\overrightarrow u = \left( {2;3;5} \right)\), \(mp\left( \alpha \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {2;1;1} \right)\).
Gọi \(\varphi \) là góc giữa d và \(\left( \alpha \right)\) thì \(0 \le \varphi \le {90^0}\) và
\(\sin \varphi = {{\left| {\overrightarrow u .\overrightarrow n } \right|} \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} \) \(= {{\left| {2.2 + 3.1 + 5.1} \right|} \over {\sqrt {4 + 9 + 25} .\sqrt {4 + 1 + 1} }} = {6 \over {\sqrt {57} }}\).
LG b
Tìm tọa độ giao điểm của d và \(\left( \alpha \right)\).
Phương pháp giải:
Viết d dưới dạng tham số rồi xét hệ phương trình tọa độ giao điểm.
Lời giải chi tiết:
d có phương trình tham số
\(\left\{ \matrix{
x = 2 + 2t \hfill \cr
y = - 1 + 3t \hfill \cr
z = 1 + 5t \hfill \cr} \right.\).
Thay x, y, z vào phương trình \(\left( \alpha \right)\) ta có:
\(2\left( {2 + 2t} \right) + \left( { - 1 + 3t} \right) + \left( {1 + 5t} \right) = 0 \) \(\Leftrightarrow t = {1 \over 3}\)
Ta được giao điểm \(M\left( {{8 \over 3};0;{8 \over 3}} \right)\).
LG c
Viết phương trình hình chiếu vuông góc của d trên \(\left( \alpha \right)\).
Lời giải chi tiết:
Gọi \(\left( \beta \right)\) là mặt phẳng đi qua d và vuông góc với \(\left( \alpha \right)\) thì hình chiếu d’ của d trên \(\left( \alpha \right)\) là giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\).
Vectơ pháp tuyến \(\overrightarrow {{n_{(\beta )}}} \) của \(\left( \beta \right)\) vuông góc với cả \(\overrightarrow u \) và \(\overrightarrow n \) nên ta chọn \(\overrightarrow {{n_\beta }} = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( { - 2;8; - 4} \right)\).
Ngoài ra, \(\left( \beta \right)\) đi qua d nên cũng đi qua điểm \(A\left( {2; - 1;1} \right)\).
Do đó \(\left( \beta \right)\) có phương trình:
\( - 2\left( {x - 2} \right) + 8\left( {y + 1} \right) - 4\left( {z - 1} \right) = 0\) \( \Leftrightarrow - x + 4y - 2z + 8 = 0\).
Hình chiếu d’ qua I và có vectơ chỉ phương:
\(\overrightarrow a = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } \right] \) \(= \left( {\left| \matrix{
1\,\,\,\,\,\,\,\,\,\,\,1 \hfill \cr
4\,\,\,\,\,\, - 2 \hfill \cr} \right|;\,\left| \matrix{
1\,\,\,\,\,\,\,\,2 \hfill \cr
- 2\,\,\,\,\, - 1\, \hfill \cr} \right|;\left| \matrix{
2\,\,\,\,\,\,\,\,1 \hfill \cr
- 1\,\,\,\,\,4 \hfill \cr} \right|} \right) \) \(= \left( { - 6;3;9} \right) = 3\left( { - 2;1;3} \right)\)
Vậy d’ có phương trình tham số là
\(\left\{ \matrix{
x = {8 \over 3} - 2t \hfill \cr
y = t \hfill \cr
z = {8 \over 3} + 3t \hfill \cr} \right.\)
Loigiaihay.com




