Bài 29 trang 103 SGK Hình học 12 Nâng cao


Viết phương trình đường thẳng đi qua A và cắt cả hai đường thẳng sau:

Đề bài

Viết phương trình đường thẳng đi qua \(A\left( {1; - 1;1} \right)\) và cắt cả hai đường thẳng sau:

\(d:\left\{ \matrix{
x = 1 + 2t \hfill \cr 
y = t \hfill \cr 
z = 3 - t \hfill \cr} \right.\) \(d':\left\{ \matrix{
x = t \hfill \cr 
y = - 1 - 2t \hfill \cr 
z = 2 + t \hfill \cr} \right.\)

Lời giải chi tiết

Lấy điểm \(M\left( {1 + 2t,t,3 - 1} \right)\) nằm trên d và điểm \(M'\left( {t', - 1 - 2t',2 + t'} \right)\) nằm trên d’.
Rõ ràng \(A \notin d\) và \(A \notin d'\). Ta tìm t và t’ sao cho A, M, M’ thẳng hàng, tức \(\overrightarrow {AM} \) và \(\overrightarrow {AM'} \) cùng phương.
Ta có \(\overrightarrow {AM}  = \left( {2t,1 + t,2 - t} \right);\) \(\overrightarrow {AM'}  = \left( { - 1 + t', - 2t',1 + t'} \right)\).

Do đó:

$$\eqalign{
& \left[ {\overrightarrow {AM} ,\overrightarrow {AM'} } \right] \cr&= \left( {\left| \matrix{
{1 + t}\,\,\,\,\,{2 - t} \hfill \cr 
- 2t'\,\,\,\,\,\,{1 + t'} \hfill \cr} \right|;\left| \matrix{
{2 - t}\,\,\,\,\,\,\,\,\,2t \hfill \cr 
{1 + t'}\,\, \,\,{- 1 + t' }\hfill \cr} \right|;\left| \matrix{
2t\,\,\,\,\,\,\,\,\,\,\,{1 + t} \hfill \cr 
{- 1 + t'}\,\,\,\,{ - 2t'} \hfill \cr} \right|} \right) \cr 
& = \left( {1 + t + 5t' - tt'; - 2 - t + 2t' - 3tt';1 + t - t' - 5tt'} \right) \cr} $$

Hai vectơ \(\overrightarrow {AM} \) và \(\overrightarrow {AM'} \) cùng phương khi và chỉ khi \(\left[ {\overrightarrow {AM} ,\overrightarrow {AM'} } \right] = \overrightarrow 0 \) hay: 

\(\left\{ \matrix{
1 + t + 5t' - tt' = 0 \hfill \cr 
- 2 - t + 2t' - 3tt' = 0 \hfill \cr 
1 + t - t' - 5tt' = 0 \hfill \cr} \right.\)

Khử số hạng tt’ từ các phương trình trên, ta được hệ

\(\left\{ \matrix{
5 + 4t + 13t' = 0 \hfill \cr 
4 + 4t + 26t' = 0 \hfill \cr} \right.\).

Suy ra \(t =  - {3 \over 2};t' = {1 \over {13}}\). Khi đó \(\overrightarrow {AM}  = \left( { - 3; - {1 \over 2};{7 \over 2}} \right)\).
Gọi \(\Delta \) là đường thẳng đi qua A và M, \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = 2\overrightarrow {AM}  = \left( { - 6; - 1;7} \right)\) nên có phương trình tham số là: 

\(\left\{ \matrix{
x = 1 - 6t \hfill \cr 
y = - 1 - t \hfill \cr 
z = 1 + 7t \hfill \cr} \right.\)

Cách khác:

Gọi Δ là đường thẳng cần tìm, ta có Δ =(P)∩(Q), trong đó (P) chứa A và d và (Q) chứa A và d’.

Đường thẳng d đi qua Mo (1,0,3) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1; - 1} \right)\) nên mp(P) đi qua A(1, -1, 1) và nhận \(\left[ {\overrightarrow u ,\overrightarrow {{M_0}A} } \right] = \left( { - 3;4; - 2} \right)\) là vectơ pháp tuyến.

Suy ra mp(P) có phương trình: -3x+4y-2z+9=0

Tương tự mp(Q) có phương trình: x+y+z-1=0

Vậy phương trình của Δ là \(\left\{ \begin{array}{l}3x + 4y - 2z + 9 = 0\\x + y + z - 1 = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 1 - 6t\\y =  - 1 - t\\z = 1 + 7t\end{array} \right.,t \in \mathbb{R}\).

Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài