Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 3. Phương trình đường thẳng
Bài 28 trang 103 SGK Hình học 12 Nâng cao>
Xác định vị trí tương đối giữa các cặp đường thẳng d và d’ cho bởi phương trình:
Xác định vị trí tương đối giữa các cặp đường thẳng d và d’ cho bởi phương trình:
LG a
\(d:{{x - 1} \over 2} = y - 7 = {{z - 3} \over 4}\,;\,d':{{x - 3} \over 6} = {{y + 1} \over { - 2}} = {{z + 2} \over 1}\)
Phương pháp giải:
Kiểm tra tích \( \left[ {\overrightarrow u ;\overrightarrow u '} \right].\overrightarrow {MM'} \) so với 0.
Lời giải chi tiết:
Đường thẳng d đi qua M(1; 7; 3) và có vectơ chỉ phương \(\overrightarrow u = \left( {2;1;4} \right)\).
Đường thẳng d’ đi qua \(M'\left( {3; - 1; - 2} \right)\) và có vectơ chỉ phương \(\overrightarrow u ' = \left( {6; - 2;1} \right)\).
Ta có \(\overrightarrow {MM'} = \left( {2; - 8; - 5} \right)\) và \(\left[ {\overrightarrow u ;\overrightarrow u '} \right] = \left( {9;22; - 10} \right)\) \( \Rightarrow \left[ {\overrightarrow u ;\overrightarrow u '} \right].\overrightarrow {MM'} = - 108 \ne 0\).
Vậy d và d’ chéo nhau.
LG b
\(d:\left\{ \matrix{
x = t \hfill \cr
y = - 3 - 4t \hfill \cr
z = - 3 - 3t \hfill \cr} \right.\)
d’ là giao tuyến của hai mặt phẳng \(\left( \alpha \right):x + y - z = 0,\) \(\left( {\alpha '} \right):2x - y + 2z = 0\).
Lời giải chi tiết:
Đường thẳng d đi qua \(M\left( {0; - 3; - 3} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {1; - 4; - 3} \right)\)
Đường thẳng d’ có vectơ chỉ phương
![]()
d và d’ có cùng vectơ chỉ phương và \(M\left( {0; - 3; - 3} \right)\) không nằm trên d’ nên d và d’ song song.
Cách khác:
Thay x, y, z ở phương trình tham số của d vào phương trình (α) ta được:
t-3-4t+3+3t=0 <=> 0 = 0 (đúng với ∀t)
Vậy d ⊂ (α) (1)
Thay x, y, z ở phương trình tham số của d vào phương trình (α') ta được:
2t+3+4t-6-6t=0 <=> -3=0 (vô nghiệm)
Vậy d // α' (2)
Từ (1) và (2) suy ra: d // d’.
Loigiaihay.com




