Bài tập trắc nghiệm trang 38, 39 Sách bài tập (SBT) Giải tích 12


Hàm số dạng này có một điểm cực đại tại x = 0 và đồng biến trên khoảng (-∞; b) với b ≤ 0. Vậy hàm số đồng biến trên khoảng (-∞; 0).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Chọn các đáp án đúng nhất trong các đáp án A, B, C, D

Câu 1

Hàm số \(y =  - {{{x^4}} \over 2} + 1\) đồng biến trên khoảng:

A. (-∞; 0)            B. (1; +∞)          C. (-3; 4)              D. (-∞; 1)

Lời giải chi tiết:

Chọn A.

Hàm số dạng này có một điểm cực đại tại x  = 0 và đồng biến trên khoảng (-∞; b) với b ≤ 0. Vậy hàm số đồng biến trên khoảng (-∞; 0).

Câu 2

Với giá trị nào của m, hàm số nghịch biến trên mỗi khoảng xác định của nó?

A. \(m =  - 1\)                                 B. \(m > 1\)       

C. \(m \in \left( { - 1;1} \right)\)                        D. \(m \le  - {5 \over 2}\) 

Lời giải chi tiết:

Chọn D

\(\eqalign{
& y' = {{ - x + 4x + 2m + 1} \over {{{\left( {2 - x} \right)}^2}}};\,y' \le 0\left( {x \ne 2} \right) \cr 
& \Leftrightarrow \Delta ' = 2m + 5 \le 0 \cr}\)

dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞) khi \(m \le  - {5 \over 2}\).

Câu 3

Các điểm cực tiểu của hàm số  là:

A. \(x =  - 1\)                                  B. \(x = 5\)               

C. \(x = 0\)                                     D. \(x = 1,\,\,x = 2\) 

Lời giải chi tiết:

Chọn C

Ta có \(y\left( 0 \right) = 2,\,\,\,\,\,\,\,\,\,\,\,\,\,y\left( a \right) = {a^4} + 3{a^2} + 2 \ge 2\) với mọi a ≠ 0

Vậy hàm số có một điểm cực tiểu là x = 0.

Câu 4

Giá trị lớn nhất của hàm số  là:

A. 3                        B. 2                        C. -5                       D. 10

Lời giải chi tiết:

Chọn B

Với mọi x ≠ 0 ta đều có \(y = {4 \over {{x^2} + 2}} \le {4 \over {0 + 2}} = 2\)

nên hàm số đạt giá trị lớn nhất khi x = 0 hay \(\mathop {\max y}\limits_R  = 2\).

Câu 5

Cho hàm số  

A. Hàm số đồng biến trên từng khoảng xác định;

B. Hàm số đồng biến trên khoảng (-∞;+∞);

C. Hàm số nghịch biến trên từng khoảng xác định;

D. Hàm số nghịch biến trên khoảng (-∞;+∞).

Lời giải chi tiết:

Chọn A

Câu 6

Tọa độ giao điểm của đồ thị các hàm số \(y = {{{x^2} - 2x - 3} \over {x - 2}}\) và  là:

A. (2; 2)               B. (2; -3)              C(-1; 0)                D. (3; 1)

Lời giải chi tiết:

Chọn C

Hàm số \(y = {{{x^2} - 2x - 3} \over {x - 2}}\) không xác định tại x = 2 nên phải loại (A), (B).

Thay x = 3 vào hàm số trên, ta được y(3) = 0. Mặt khác, hàm số thứ hai có giá trị là 4 khi x = 3, do đó loại (D). Vậy (C) là khẳng định đúng.


Câu 7

Số giao điểm của đồ thị hàm số \(y = \left( {x - 3} \right)\left( {{x^2} + x + 4} \right)\) với trục hoành là:

A. 2                        B. 3                        C. 0                         D. 1

Lời giải chi tiết:

Chọn D

Vì \({x^2} + x + 4 > 0\) với mọi x nên phương trình \(\left( {x - 3} \right)\left( {{x^2} + x + 4} \right) = 0\) chỉ có một nghiệm là x = 3. Do đó, đồ thị của hàm số đã cho chỉ có một giao điểm với trục hoành.

Sachbaitap.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí