Bài 82 trang 116 SBT Hình học 10 Nâng cao


Giải bài tập Bài 82 trang 116 SBT Hình học 10 Nâng cao

Đề bài

Cho đường tròn \((C)\) có phương trình \({x^2} + {y^2} = 1\). Đường tròn \((C)\) cắt \(Ox\) tại \(A(-1 ; 0)\) và \(B(1 ; 0)\). Đường thẳng \(d\) có phương trình \(x = m ( - 1 < m < 1, m \ne 0)\) cắt \((C)\) tại \(M\) và \(N\). Đường thẳng \(AM\) cắt đường thẳng \(BN\) tại \(K\). Tìm tập hợp các điểm \(K\) khi \(m\) thay đổi.

 

Lời giải chi tiết

(h.117).

 ÃA

Giả sử \(M = ({x_0} ; {y_0})\), suy ra \(N = ({x_0} ;  - {y_0})\). Do \( - 1 < m < 1,  m \ne 0\) nên \( - 1 < {x_0}, {y_0} < 1, {x_0} \ne 0,  {y_0} \ne 0\). Ta có:

Phương trình đường thẳng \(AM:  \dfrac{{x + 1}}{{{x_0} + 1}} =  \dfrac{y}{{{y_0}}}\)        (1)

Phương trình đường thẳng \(BN:  \dfrac{{x - 1}}{{{x_0} - 1}} =  \dfrac{y}{{ - {y_0}}}\)         (2)

Tọa độ \((x ; y)\) của \(K\) thỏa mãn (1) và (2). Nhân từng vế của (1) và (2) với nhau, ta được : \( \dfrac{{{x^2} - 1}}{{x_0^2 - 1}} =  \dfrac{{{y^2}}}{{ - y_0^2}}\). Vì \(M \in (C)\) nên \(x_0^2 + y_0^2 = 1\), suy ra \(x_0^2 - 1 =  - y_0^2\). Do đó \({x^2} - 1 = {y^2}\) hay \({x^2} - {y^2} = 1\). Tập hợp các điểm \(K\) là hypebol \( \dfrac{{{x^2}}}{1} -  \dfrac{{{y^2}}}{1} = 1\) bỏ đi hai đỉnh : \((-1 ; 0)\) và \((1 ; 0).\)

Loigiaihay.com

 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 6. Đường hypebol.

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài