Bài 73 trang 114 SBT Hình học 10 Nâng cao


Giải bài tập Bài 73 trang 114 SBT Hình học 10 Nâng cao

Đề bài

Xác định độ dài trục thực, trục ảo; tiêu cự; tâm sai; tọa độ các tiêu điểm, các đỉnh và phương trình các đường tiệm cận của mỗi hypebol có phương trình sau

a) \( \dfrac{{{x^2}}}{{16}} -  \dfrac{{{y^2}}}{4} = 1;\)                             

b) \(4{x^2} - {y^2} = 4;\)

c) \(16{x^2} - 25{y^2} = 400;\)

d) \(16{x^2} - 9{y^2} = 16;\)

e) \({x^2} - {y^2} = 1;\)

f) \(m{x^2} - n{y^2} = 1  (m > 0, n > 0).\)

Vẽ các hypebol có phương trình ở câu a), b) và e).

Lời giải chi tiết

a) \({a^2} = 16   \Rightarrow   a = 4 ; \) \( {b^2} = 4   \Rightarrow   b = 2; \) \( {c^2} = {a^2} + {b^2} = 20   \Rightarrow   c = 2\sqrt 5 \).

Độ dài trục thực : \(2a=8.\)

Độ dài trục ảo : \(2b=4.\)

Tiêu cự: \(2c = 4\sqrt 5 \), tâm sai \(e =  \dfrac{c}{a} =  \dfrac{{\sqrt 5 }}{2}\).

Các tiêu điểm : \({F_1}( - 2\sqrt 5  ; 0) ,  {F_2}(2\sqrt 5  ; 0)\)

Các đỉnh : \({A_1}( - 4 ; 0) , {A_2}(4 ; 0)\).

Các tiệm cận :  \(y =  \pm  \dfrac{b}{a}x =  \pm  \dfrac{1}{2}x\)

Hypebol được vẽ như hình 115.

 

b), c), d), e) làm tương tự.

f) Viết lại phương trình hypebol:

\(\begin{array}{l} \dfrac{{{x^2}}}{{ \dfrac{1}{m}}} -  \dfrac{{{y^2}}}{{ \dfrac{1}{n}}} = 1.\\{a^2} =  \dfrac{1}{m}    \Rightarrow   a =  \dfrac{1}{{\sqrt m }}  ,\\   {b^2} =  \dfrac{1}{n}    \Rightarrow    b =  \dfrac{1}{{\sqrt n }}.\\{c^2} = {a^2} + {b^2} =  \dfrac{1}{m} +  \dfrac{1}{n} \\  \Rightarrow   c = \sqrt { \dfrac{{m + n}}{{mn}}} .\end{array}\)

Độ dài trục thực : \(2a =  \dfrac{2}{{\sqrt m }}\) , độ dài trục ảo : \(2b =  \dfrac{2}{{\sqrt n }}\).

Tiêu cự : \(2c = 2\sqrt { \dfrac{{m + n}}{{mn}}} \).

Các tiêu điểm : \({F_1} = \left( { - \sqrt { \dfrac{{m + n}}{{mn}}}  ; 0} \right) ,\) \(  {F_2} = \left( {\sqrt { \dfrac{{m + n}}{{mn}}}  ; 0} \right)\).

Các đỉnh : \({A_1} = \left( { -  \dfrac{1}{{\sqrt m }} ; 0} \right) ,  {A_2} = \left( { \dfrac{1}{{\sqrt m }} ; 0} \right)\).

Các tiệm cận: \(y =  \pm \sqrt { \dfrac{m}{n}} .x\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí