Bài 78 trang 115 SBT Hình học 10 Nâng cao


Giải bài tập Bài 78 trang 115 SBT Hình học 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho hai điểm \(A(-1 ; 0), B(1 ; 0)\) và đường thẳng \(\Delta : x -  \dfrac{1}{4} = 0\).

 

LG a

Tìm tập hợp các điểm \(M\) sao cho \(MB=2MH,\) với \(H\) là hình chiếu vuông góc của \(M\) trên\(\Delta \).

 

Lời giải chi tiết:

Xét \(M(x ; y).\) Ta có

\(\begin{array}{l}MB = 2MH    \Leftrightarrow   M{B^2} = 4M{H^2}  \\  \Leftrightarrow  {(x - 1)^2} + {y^2} = 4{\left( {x -  \dfrac{1}{4}} \right)^2}\\\Leftrightarrow   3{x^2} - {y^2} =  \dfrac{3}{4}   \\ \Leftrightarrow     \dfrac{{{x^2}}}{{ \dfrac{1}{4}}} -  \dfrac{{{y^2}}}{{ \dfrac{3}{4}}} = 1.\,\,\,\,\,\,\,\,\,\,(1)\end{array}\)

Tập hợp các điểm \(M\) cần tìm là hypebol có phương trình (1).

 

LG b

 Tìm tập hợp các điểm \(N\) sao cho các đường thẳng \(AN\) và \(BN\) có tích các hệ số góc bằng \(2.\)

 

Lời giải chi tiết:

Xét \(N(x ; y)\) thì \(\overrightarrow {AN}  = (x + 1 ; y),  \overrightarrow {BN}  = (x - 1 ; y)\). Rõ ràng \(x \ne  - 1\) và \(x \ne 1\) (vì nếu không thì các đường thẳng \(AN\) và \(BN\) lần lượt có hệ số góc \({k_1} =  \dfrac{y}{{x + 1}},  {k_2} =  \dfrac{y}{{x - 1}}\).

Khi đó :

\({k_1}.{k_2} = 2    \Leftrightarrow     \dfrac{y}{{x + 1}}. \dfrac{y}{{x - 1}} = 2\)

\(    \Leftrightarrow     \dfrac{{{y^2}}}{{{x^2} - 1}} = 2    \Leftrightarrow    {y^2} = 2{x^2} - 2 \)

\(   \Leftrightarrow    \dfrac{{{x^2}}}{1} -  \dfrac{{{y^2}}}{2} = 1   \)         (2)

Tập hợp các điểm \(N\) cần tìm là hypebol có phương trình (2) bỏ đi hai đỉnh : \((-1 ; 0)\) và \((1 ; 0).\)

Loigiaihay.com

 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 6. Đường hypebol.

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài