Bài 78 trang 115 SBT Hình học 10 Nâng cao>
Giải bài tập Bài 78 trang 115 SBT Hình học 10 Nâng cao
Cho hai điểm \(A(-1 ; 0), B(1 ; 0)\) và đường thẳng \(\Delta : x - \dfrac{1}{4} = 0\).
LG a
Tìm tập hợp các điểm \(M\) sao cho \(MB=2MH,\) với \(H\) là hình chiếu vuông góc của \(M\) trên\(\Delta \).
Lời giải chi tiết:
Xét \(M(x ; y).\) Ta có
\(\begin{array}{l}MB = 2MH \Leftrightarrow M{B^2} = 4M{H^2} \\ \Leftrightarrow {(x - 1)^2} + {y^2} = 4{\left( {x - \dfrac{1}{4}} \right)^2}\\\Leftrightarrow 3{x^2} - {y^2} = \dfrac{3}{4} \\ \Leftrightarrow \dfrac{{{x^2}}}{{ \dfrac{1}{4}}} - \dfrac{{{y^2}}}{{ \dfrac{3}{4}}} = 1.\,\,\,\,\,\,\,\,\,\,(1)\end{array}\)
Tập hợp các điểm \(M\) cần tìm là hypebol có phương trình (1).
LG b
Tìm tập hợp các điểm \(N\) sao cho các đường thẳng \(AN\) và \(BN\) có tích các hệ số góc bằng \(2.\)
Lời giải chi tiết:
Xét \(N(x ; y)\) thì \(\overrightarrow {AN} = (x + 1 ; y), \overrightarrow {BN} = (x - 1 ; y)\). Rõ ràng \(x \ne - 1\) và \(x \ne 1\) (vì nếu không thì các đường thẳng \(AN\) và \(BN\) lần lượt có hệ số góc \({k_1} = \dfrac{y}{{x + 1}}, {k_2} = \dfrac{y}{{x - 1}}\).
Khi đó :
\({k_1}.{k_2} = 2 \Leftrightarrow \dfrac{y}{{x + 1}}. \dfrac{y}{{x - 1}} = 2\)
\( \Leftrightarrow \dfrac{{{y^2}}}{{{x^2} - 1}} = 2 \Leftrightarrow {y^2} = 2{x^2} - 2 \)
\( \Leftrightarrow \dfrac{{{x^2}}}{1} - \dfrac{{{y^2}}}{2} = 1 \) (2)
Tập hợp các điểm \(N\) cần tìm là hypebol có phương trình (2) bỏ đi hai đỉnh : \((-1 ; 0)\) và \((1 ; 0).\)
Loigiaihay.com
- Bài 79 trang 116 SBT Hình học 19 Nâng cao
- Bài 80 trang 116 SBT Hình học 10 Nâng cao
- Bài 81 trang 116 SBT Hình học 10 Nâng cao
- Bài 82 trang 116 SBT Hình học 10 Nâng cao
- Bài 83 trang 116 SBT Hình học 10 Nâng cao
>> Xem thêm