CHƯƠNG 1. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT
Bài 1. Phương trình quy về phương trình bậc nhất một ẩn
Bài 2. Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn
Bài tập cuối chương 1
CHƯƠNG 6. MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT
Bài 1. Mô tả và biểu diễn dữ liệu trên bảng, biểu đồ
Bài 2. Tần số. Tần số tương đối
Bài 3. Tần số ghép nhóm. Tần số tương đối ghép nhóm
Bài 4. Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố
Bài tập cuối chương 6
Mật độ dân số
THỰC HÀNH PHẦN MỀM GEOGEBRA

Trắc nghiệm Giải tam giác vuông Toán 9 có đáp án

Trắc nghiệm Giải tam giác vuông

6 câu hỏi
Trắc nghiệm
Câu 1 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 10\,cm,\widehat C = 30^\circ .\) Tính $AB;BC$

  • A.

    $AB = \dfrac{{5\sqrt 3 }}{3};BC = \dfrac{{20\sqrt 3 }}{3}$

  • B.

    $AB = \dfrac{{10\sqrt 3 }}{3};BC = \dfrac{{14\sqrt 3 }}{3}$

  • C.

    $AB = \dfrac{{10\sqrt 3 }}{3};BC = 20\sqrt 3 $

  • D.

    $AB = \dfrac{{10\sqrt 3 }}{3};BC = \dfrac{{20\sqrt 3 }}{3}$

Câu 2 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 15\,cm,AB = 12\,cm\) . Tính $AC;\widehat B$ .

  • A.

    $AC = 8 (cm);\widehat B \approx 36^\circ 52'$

  • B.

    $AC = 9(cm);\widehat B \approx 36^\circ 52'$

  • C.

    $AC = 9(cm);\widehat B \approx 37^\circ 52'$     

  • D.

    $AC = 9(cm);\widehat B \approx 36^\circ 55'$

Câu 3 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 7\,cm,AB = \,5cm\). Tính $BC;\widehat C$ . 

  • A.

    $BC = \sqrt {74} (cm);\widehat C \approx 35^\circ 32'$

  • B.

    $BC = \sqrt {74} (cm);\widehat C \approx 36^\circ 32'$

  • C.

    $BC = \sqrt {74} (cm) ;\widehat C \approx 35^\circ 33'$

  • D.

    $BC = \sqrt {75} (cm) ;\widehat C \approx 35^\circ 32'$

Câu 4 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 20\,cm,\widehat C = 60^\circ .\) Tính \(AB;BC\)

  • A.

    \(AB = 20\sqrt 3 ;BC = 40\)

  • B.

    \(AB = 20\sqrt 3 ;BC = 40\sqrt 3 \)                    

  • C.

    \(AB = 20;BC = 40\) 

  • D.

    \(AB = 20;BC = 20\sqrt 3 \)

Câu 5 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 26\,cm,AB = 10\,cm\) Tính \(AC;\widehat B\) . (làm tròn đến độ)

  • A.

    \(AC = 22;\widehat C \approx 67^\circ \)

  • B.

    \(AC = 24;\widehat C \approx 66^\circ \)   

  • C.

    \(AC = 24;\widehat C \approx 67^\circ \)

  • D.

    \(AC = 24;\widehat C \approx 68^\circ \)

Câu 6 :

Cho tam giác \(ABC\) cân tại \(A,\,\,\angle B = {65^0},\)  đường cao \(CH = 3,6\).  Hãy giải tam giác \(ABC\).

  • A.
    \(\angle A = {50^0}\,\,;\,\,\,\angle C = {65^0}\,\,;\,\,AB = AC = 5,6\,\,;\,\,BC = 8,52\)
  • B.
    \(\angle A = {50^0}\,\,;\,\,\,\angle C = {65^0}\,\,;\,\,AB = AC = 5,6\,\,;\,\,BC = 4,42\)
  • C.
    \(\angle A = {50^0}\,\,;\,\,\,\angle C = {65^0}\,\,;\,\,AB = AC = 4,7\,\,;\,\,BC = 4,24\)
  • D.
    \(\angle A = {50^0}\,\,;\,\,\,\angle C = {65^0}\,\,;\,\,AB = AC = 4,7\,\,;\,\,BC = 3,97\)