Giải vở bài tập Toán lớp 4 tập 1, tập 2 Chương 4 : Phân số - Các phép tính với phân số. Giới th..

Bài 117 : Luyện tập


Giải bài tập 1, 2, 3, 4 trang 38 VBT toán 4 bài 117 : Luyện tập với lời giải chi tiết và cách giải nhanh, ngắn nhất

Lựa chọn câu để xem lời giải nhanh hơn

Bài 1

Tính (theo mẫu) :

Mẫu: \(\displaystyle2 + {3 \over 7} = {{14} \over 7} + {3 \over 7} = {{14 + 3} \over 7} = {{17} \over 7}\)

a) \(\displaystyle{2 \over 5} + 3\)                                b) \(\displaystyle4 + {2 \over 3}\)

Phương pháp giải:

Viết số tự nhiên dưới dạng phân số rồi thực hiện phép cộng hai phân số như thông thường. 

Lời giải chi tiết:

a) \(\displaystyle{2 \over 5} + 3 = {2 \over 5} + {{15} \over 5} = {{2 + 15} \over 5} = {{17} \over 5}\)

b) \(\displaystyle4 + {2 \over 3} = {{12} \over 3} + {2 \over 3} = {{12 + 2} \over 3} = {{14} \over 3}\)

Bài 2

Viết phân số thích hợp vào chỗ chấm :

a) \(\displaystyle{4 \over 5} + {2 \over 3} = {2 \over 3} + ...;\)             \(\displaystyle{{13} \over {25}} + {3 \over 7} = {3 \over 7} + ...\)

b) \(\displaystyle\left( {{2 \over 3} + {3 \over 4}} \right) + {1 \over 2} = {2 \over 3} + \left( {{3 \over 4} + ...} \right)\)

     \(\displaystyle{2 \over 3} + \left( {{3 \over 4} + {1 \over 2}} \right) = \left( {... + {3 \over 4}} \right) + {1 \over 2}\)

Phương pháp giải:

- Áp dụng tính chất giao hoán của phép cộng : Khi ta đổi chỗ hai phân số trong một tổng thì tổng của chúng không thay đổi.

- Áp dụng tính chất kết hợp của phép cộng : Khi cộng một tổng hai phân số với phân số thứ ba, ta có thể cộng phân số thứ nhất với tổng của phân số thứ hai và phân số thứ ba. 

Lời giải chi tiết:

a) \(\displaystyle{4 \over 5} + {2 \over 3} = {2 \over 3} + {4 \over 5}\)                 \(\displaystyle{{13} \over {25}} + {3 \over 7} = {3 \over 7} + {{13} \over {25}}\)

b) \(\displaystyle\left( {{2 \over 3} + {3 \over 4}} \right) + {1 \over 2} = {2 \over 3} + \left( {{3 \over 4} + {1 \over 2}} \right)\)

    \(\displaystyle{2 \over 3} + \left( {{3 \over 4} + {1 \over 2}} \right) = \left( {{2 \over 3} + {3 \over 4}} \right) + {1 \over 2}\)

Bài 3

Tính bằng cách thuận tiện nhất :

a) \(\displaystyle{{12} \over {25}} + {3 \over 5} + {{13} \over {25}}\)

b) \(\displaystyle{3 \over 2} + {2 \over 3} + {4 \over 3}\)

c) \(\displaystyle{3 \over 5} + {7 \over 5} + {3 \over 4}\)

Phương pháp giải:

Áp dụng tính chất giao hoán và kết hợp của phép cộng để nhóm các phân số thích hợp lại với nhau. 

Lời giải chi tiết:

a) \(\displaystyle{{12} \over {25}} + {3 \over 5} + {{13} \over {25}} = \left( {{{12} \over {25}} + {{13} \over {25}}} \right) + {3 \over 5} \)

\(\displaystyle= {{25} \over {25}} + {3 \over 5} = 1 + {3 \over 5} = {5 \over 5} +{{3} \over 5} = {8 \over 5}\)

b) \(\displaystyle{3 \over 2} + {2 \over 3} + {4 \over 3} ={3 \over 2} + \left( {{2 \over 3} + {4 \over 3}} \right) \)

\(\displaystyle= {3 \over 2}  +{6 \over 3}  =  {3 \over 2} + 2 ={3 \over 2} + {{4} \over 2}= {7 \over 2} \)

c) \(\displaystyle{3 \over 5} + {7 \over 5} + {3 \over 4} = \left( {{3 \over 5} + {7 \over 5}} \right) + {3 \over 4} \)

\(\displaystyle= {{10} \over 5} + {3 \over 4} = 2 + {3 \over 4} = {8 \over 4} +{{ 3} \over 4} = {{11} \over 4}\)

Bài 4

Một chiếc tàu thủy giờ thứ nhất chạy được \(\displaystyle{3 \over 8}\) quãng đường, giờ thứ hai chạy được \(\displaystyle{2 \over 7}\) quãng đường, giờ thứ ba chạy được \(\displaystyle{1 \over 4}\) quãng đường. Hỏi sau ba giờ chiếc tàu thủy đó chạy được bao nhiêu phần quãng đường ?

Phương pháp giải:

Quãng đường tàu thủy chạy được trong ba giờ \(=\) quãng đường tàu thủy chạy được trong giờ thứ nhất  \(+\) quãng đường tàu thủy chạy được trong giờ thứ hai \(+\) quãng đường tàu thủy chạy được trong giờ thứ ba.

Lời giải chi tiết:

Tóm tắt

Giờ thứ nhất: \(\displaystyle{3 \over 8}\) quãng đường

Giờ thứ hai: \(\displaystyle{2 \over 7}\) quãng đường

Giờ thứ ba: \(\displaystyle{1 \over 4}\) quãng đường

Sau 3 giờ: ... quãng đường?

Bài giải

Sau ba giờ chiếc tàu thủy đó chạy được số phần quãng đường là:

\(\displaystyle{3 \over 8} + {2 \over 7} + {1 \over 4}= {{51} \over {56}}\) (quãng đường)

                     Đáp số: \(\displaystyle{{51} \over {56}}\) quãng đường.

Loigiaihay.com


Bình chọn:
4.8 trên 308 phiếu
  • Bài 118 : Phép trừ phân số

    Giải bài tập 1, 2, 3, 4 trang 39 VBT toán 4 bài 118 : Phép trừ phân số với lời giải chi tiết và cách giải nhanh, ngắn nhất

  • Bài 119 : Phép trừ phân số (tiếp theo)

    Giải bài tập 1, 2, 3, 4 trang 40 VBT toán 4 bài 119 : Phép trừ phân số (tiếp theo) với lời giải chi tiết và cách giải nhanh, ngắn nhất

  • Bài 120 : Luyện tập

    Giải bài tập 1, 2, 3, 4 trang 41 VBT toán 4 bài 120 : Luyện tập với lời giải chi tiết và cách giải nhanh, ngắn nhất

  • Bài 121 : Luyện tập chung

    Giải bài tập 1, 2, 3, 4 trang 42 VBT toán 4 bài 121 : Luyện tập chung với lời giải chi tiết và cách giải nhanh, ngắn nhất

  • Bài 122 : Phép nhân phân số

    Giải bài tập 1, 2, 3, 4 trang 43 VBT toán 4 bài 122 : Phép nhân phân số với lời giải chi tiết và cách giải nhanh, ngắn nhất

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán lớp 4 - Xem ngay

Tham Gia Group Dành Cho 2K15 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí