Giải vở bài tập Toán lớp 4 tập 1, tập 2 Chương 4 : Phân số - Các phép tính với phân số. Giới th..

Bài 106 : Luyện tập chung


Giải bài tập 1, 2, 3 trang 26 VBT toán 4 bài 106 : Luyện tập chung với lời giải chi tiết và cách giải nhanh, ngắn nhất

Lựa chọn câu để xem lời giải nhanh hơn

Bài 1

Rút gọn phân số: \(\displaystyle{{18} \over {30}};{{25} \over {40}};{{42} \over {72}};{{80} \over {100}}\).

Phương pháp giải:

Cách rút gọn phân số:

- Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn một

- Chia tử số và mẫu số cho số đó.

Cứ làm như thế cho đến khi nhận được phân số tối giản (phân số không thể rút gọn được nữa).

Lời giải chi tiết:

\( \displaystyle {{18} \over {30}} = {{18:6} \over {30:6}} = { 3\over 5};\)                      \( \displaystyle {{25} \over {40}} = {{25:5} \over {40 :5}} = { 5\over 8};\)

\( \displaystyle {{42} \over {72}} = {{42:6} \over {72:6}} = { 7\over 12};\)                      \( \displaystyle {{80} \over {100}} = {{80:20} \over {100:20}} = { 4\over 5};\)

Bài 2

Quy đồng mẫu số các phân số :

a) \(\displaystyle{5 \over 3}\) và \(\displaystyle{4 \over 7}\)

b) \(\displaystyle{3 \over 4}\) và \(\displaystyle{9 \over {16}}\)

c) \(\displaystyle{4 \over 3};{1 \over 2}\) và \(\displaystyle{3 \over 5}\)

Phương pháp giải:

Khi quy đồng mẫu số hai phân số có thể làm như sau:

- Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.

- Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.

Lời giải chi tiết:

a) Ta có: \(\displaystyle{5 \over 3} = {{5 \times 7} \over {3 \times 7}} = {{35} \over {21}}\;;\)              \(\displaystyle {4 \over 7} = {{4 \times 3} \over {7 \times 3}} = {{12} \over {21}}\)

Vậy quy đồng mẫu số của \(\displaystyle{5 \over 3}\) và \(\displaystyle{4 \over 7}\) được \(\displaystyle{{35} \over {21}}\) và \(\displaystyle{{12} \over {21}}.\)

b) Ta có: \(\displaystyle{3 \over 4} = {{3 \times 4} \over {4 \times 4}} = {{12} \over {16}}\)

Vậy quy đồng mẫu số của \(\displaystyle{3 \over 4}\) và \(\displaystyle{9 \over {16}}\) được \(\displaystyle{{12} \over {16}}\) và \(\displaystyle{9 \over {16}}.\)

c) Ta có: \(\displaystyle{4 \over 3} = {{4 \times 2 \times 5} \over {3 \times 2 \times 5}} = {{40} \over {30}}\;;\)              \(\displaystyle \,{1 \over 2} = {{1 \times 3 \times 5} \over {2 \times 3 \times 5}} = {{15} \over {30}};\)

\(\displaystyle{3 \over 5} = {{3 \times 3 \times 2} \over {5 \times 3 \times 2}} = {{18} \over {30}}\)

Vậy quy đồng mẫu của \(\displaystyle{4 \over 3};{1 \over 2}\) và \(\displaystyle{3 \over 5}\) được \(\displaystyle{{40} \over {30}};{{15} \over {30}};{{18} \over {30}}.\)

Bài 3

Khoanh vào trước câu trả lời đúng:

a) Phân số chỉ phần tô đậm của hình bên là:

A. \(\displaystyle{2 \over 3}\)                                            B. \(\displaystyle{3 \over 2}\)

C. \(\displaystyle{2 \over 5}\)                                            D. \(\displaystyle{3 \over 5}\)

b) Trong các phân số \(\displaystyle{4 \over {20}};{6 \over {28}};{{14} \over {63}};{{12} \over {51}}\) phân số bằng \(\displaystyle{2 \over 9}\) là:

A. \(\displaystyle{4 \over {20}}\)                                      B. \(\displaystyle{6 \over {28}}\)

C. \(\displaystyle{{14} \over {63}}\)                                      D. \(\displaystyle{{12} \over {51}}\)

Phương pháp giải:

a) Quan sát hình vẽ để tìm phân số chỉ phần tô đậm. Phân số chỉ phần tô đậm có tử số là số ô vuông bằng nhau được tô đậm và mẫu số là tổng số ô vuông bằng nhau.

b) Rút gọn các phân số thành phân số tối giản (nếu được). Các phân số cùng phân số tối giản thì bằng nhau. 

Lời giải chi tiết:

a) Phân số chỉ phần tô đậm của hình đã cho là \(\displaystyle{3 \over 5}.\)

    Chọn D.

b) Ta có :

\( \displaystyle {{4} \over {20}} = {{4:4} \over {20:4}} = { 1\over 5};\)                      \( \displaystyle {{6} \over {28}} = {{6:2} \over {28 :2}} = { 3\over 14};\)

\( \displaystyle {{14} \over {63}} = {{14:7} \over {63:7}} = { 2\over 9};\)                      \( \displaystyle {{12} \over {51}} = {{12:3} \over {51 : 3}} = { 4\over 17};\)

Vậy trong các phân số đã cho, phân số bằng \(\displaystyle{2 \over 9}\) là \(\displaystyle{{14} \over {63}}\).

     Chọn C.

Loigiaihay.com


Bình chọn:
4.8 trên 131 phiếu
  • Bài 107 : So sánh hai phân số cùng mẫu số

    Giải bài tập 1, 2, 3, 4 trang 27 VBT toán 4 bài 107 : So sánh hai phân số cùng mẫu số với lời giải chi tiết và cách giải nhanh, ngắn nhất

  • Bài 108 : Luyện tập

    Giải bài tập 1, 2, 3, 4, 5 trang 27, 28 VBT toán 4 bài 108 : Luyện tập với lời giải chi tiết và cách giải nhanh, ngắn nhất

  • Bài 109 : So sánh hai phân số khác mẫu số

    Giải bài tập 1, 2, 3 trang 28, 29 VBT toán 4 bài 109 : So sánh hai phân số khác mẫu số với lời giải chi tiết và cách giải nhanh, ngắn nhất

  • Bài 110 : Luyện tập

    Giải bài tập 1, 2, 3, 4, 5 trang 30, 31 VBT toán 4 bài 110 : Luyện tập với lời giải chi tiết và cách giải nhanh, ngắn nhất

  • Bài 111 : Luyện tập chung

    Giải bài tập 1, 2, 3, 4 trang 32 VBT toán 4 bài 111 : Luyện tập chung với lời giải chi tiết và cách giải nhanh, ngắn nhất

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán lớp 4 - Xem ngay

>> Học trực tuyến các môn Toán, Tiếng Việt, Tiếng Anh lớp 4 trên Tuyensinh247.com. Cam kết giúp con lớp 4 học tốt, hoàn trả học phí nếu học không hiệu quả.