Bài I.14 trang 17 SBT Vật Lí 12


Giải I.14 trang 17 sách bài tập vật lí 12. Một con lắc đơn đang dao động điều hoà với biên độ góc

Đề bài

Một con lắc đơn đang dao động điều hòa với biên độ góc \({\alpha _0}\) tại một nơi có gia tốc trọng trường là \(g\). Biết lực căng dây lớn nhất bằng \(1,02\) lần lực căng dây nhỏ nhất. Tính biên độ góc \({\alpha _0}\).

Phương pháp giải - Xem chi tiết

Sử dụng định luật II Niuton xác định biểu thức lực căng dây.

Lời giải chi tiết

Tại vị trí li độ góc \(\alpha \):

\(\begin{array}{l}\left\{ \begin{array}{l}{{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\\{{\rm{W}}_d} = mgl(\cos \alpha  - \cos {\alpha _0})\end{array} \right.\\ \Rightarrow v = \sqrt {2gl(\cos \alpha  - \cos {\alpha _0})} \end{array}\)

 

Áp dụng định luật II Niuton:

\(\overrightarrow T  + \overrightarrow P  = m\overrightarrow a \)

Chiếu theo phương hướng tâm:

\(\begin{array}{l}T - P\cos \alpha  = m{a_{ht}} = m\dfrac{{{v^2}}}{l}\\ \Leftrightarrow T = P\cos \alpha  + m\dfrac{{{v^2}}}{l}\\= mg\cos \alpha  + 2mg(\cos \alpha  - \cos {\alpha _0})\\= mg(3\cos \alpha  - 2\cos {\alpha _0})\end{array}\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}{T_{\max }} = mg(3 - 2\cos {\alpha _0})(VTCB)\\{T_{\min }} = mg\cos {\alpha _0}(VTB)\end{array} \right.\\ \Rightarrow \dfrac{{{T_{\max }}}}{{{T_{\min }}}} = \dfrac{{3 - 2\cos {\alpha _0}}}{{\cos {\alpha _0}}} = 1,02\\ \Rightarrow \cos {\alpha _0} = 0,99 \Rightarrow {\alpha _0} = 0,115(rad)\end{array}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài