Bài I.10 trang 16 SBTVật Lí 12


Giải I.10 trang 16 sách bài tập vật lí 12. Một con lắc lò xo dao động theo trục x nằm ngang. Lò xo có độ cứng 100 N/m ; vật có khối lượng 1,00 kg. Bỏ qua ma sát.

Đề bài

Một con lắc lò xo dao động theo trục \(x\)nằm ngang. Lò xo có độ cứng \(100N/m\); vật có khối lượng \(1,00kg\). Bỏ qua ma sát. Tại \(t = 0\) vật được kéo ra khỏi vị trí cân bằng cho lò xo dãn ra \(10cm\) rồi thả không vận tốc đầu. Chọn gốc tọa độ tại vị trí cân bằng.

\(a)\) Tính chu kì và biên độ dao động.

\(b)\)  Viết phương trình dao động.

\(c)\)  Tính cơ năng của con lắc.

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức tính chu kì con lắc lò xo: \(T = 2\pi \sqrt {\dfrac{m}{k}} \)

Sử dụng công thức độc lập với thời gian giữa li độ và vận tốc: \(A = \sqrt {{x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}}} \)

b) Vận dụng các bước viết phương trình dao động điều hòa: tìm \(\omega \), tìm \(A\), tìm pha ban đầu \(\varphi \)

c) Sử dụng công thức tính cơ năng: \({\rm{W}} = \dfrac{1}{2}k{A^2}\)

Lời giải chi tiết

a) Tần số góc: \(\omega  = \sqrt {\dfrac{k}{m}}  = \sqrt {\dfrac{{100}}{1}}  = 10(rad/s)\)

Chu kì con lắc lò xo: \(T = \dfrac{{2\pi }}{\omega } = \dfrac{{2\pi }}{{10}} = \dfrac{\pi }{5}(s)\)

Tại \(t = 0:\left\{ \begin{array}{l}x = 10cm\\v = 0\end{array} \right.\) :

Ta có: \(A = \sqrt {{x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}}}  = \sqrt {{{10}^2} + 0}  = 10(cm)\)

b) Tại \(t = 0:\left\{ \begin{array}{l}x = A\cos \varphi  = A\\v =  - \sin \varphi  = 0\end{array} \right. \Rightarrow \varphi  = 0\)

phương trình dao động điều hòa là: \(x = 10\cos (10t)(cm)\)

c) Cơ năng con lắc: \({\rm{W}} = \dfrac{1}{2}k{A^2} = \dfrac{1}{2}.100.0,{1^2} = 0,5(N)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài