Giải bài 3.47 trang 44 sách bài tập toán 10 - Kết nối tri thức với cuộc sống


Tính chiều cao của cây đó (làm tròn đến hàng đơn vị, theo đơn vị mét).

Đề bài

Trên sườn đồi, với độ dốc \(12\% \) (độ dốc của sườn đồi được tính bằng tang của một góc tạo bởi sườn đồi với phương nằm ngang) có một cây cao mọc thẳng đứng. Ở phía chân đồi, cách gốc cây 30m, người ta nhìn ngọn cây dưới một góc \({45^ \circ }\) so với phương nằm ngang. Tính chiều cao của cây đó (làm tròn đến hàng đơn vị, theo đơn vị mét).

Phương pháp giải - Xem chi tiết

- Tính góc BAH, góc CAB và góc BCA

-  Áp dụng định lý sin để tính cạnh BC: \(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\)

Lời giải chi tiết

Do sườn đồi có độ dốc \(12\% \) nên sườn đồi tạo với phương nằm ngang một góc \(\tan HAB = 12\% \,\, \Rightarrow \,\,\widehat {HAB} = {\tan ^{ - 1}}\left( {12\% } \right) \approx {7^ \circ }\)

Ta có: \(\widehat {BAC} = \widehat {HAC} - \widehat {HAB} \approx {45^ \circ } - {7^ \circ } \approx {38^ \circ }\) và \(\widehat {BCA} = {45^ \circ }\)

Áp dụng định lý sin trong \(\Delta ABC,\) ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\\ \Rightarrow \,\,BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}}\\ \Rightarrow \,\,BC = \frac{{30.\sin {{38}^ \circ }}}{{\sin {{45}^ \circ }}} \approx 26\,\,\left( m \right)\end{array}\)


Bình chọn:
3.8 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí