Giải bài 3.33 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống


Độ dài cạnh BC bằng:

Đề bài

Tam giác \(ABC\) có \(AB = \sqrt 5 ,\,\,AC = \sqrt 2 ,\,\,\widehat C = {45^ \circ }.\) Độ dài cạnh \(BC\) bằng:

A. \(3.\)

B. \(2.\)

C. \(\sqrt 3 .\)

D. \(\sqrt 2 .\)

Phương pháp giải - Xem chi tiết

Áp dụng định lý cosin để tính \(BC\): \(\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\) xong giải phương trình với ẩn là \(BC.\)

Lời giải chi tiết

Độ dài cạnh \(BC\) là:

Áp dụng định lý cosin, ta có:

\(\begin{array}{l}\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\,\, \Leftrightarrow \,\,\cos {45^ \circ } = \frac{{2 + B{C^2} - 5}}{{2\sqrt 2 .BC}} = \frac{1}{{\sqrt 2 }}\\ \Leftrightarrow \,\,B{C^2} - 2BC - 3 = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{BC = 3}\\{BC =  - 1}\end{array}} \right.\end{array}\)

Vì \(BC > 0\) nên \(BC = 3.\)

Chọn A.


Bình chọn:
3.5 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí