Bài 23 trang 108 Vở bài tập toán 6 tập 2


Đề bài

Gọi \(Ot, Ot'\) là hai tia nằm trên cùng một nửa mặt phẳng bờ là đường thẳng \(xy\) đi qua \(O.\) Biết \(\widehat{xOt}=30^0,\) \(\widehat{yOt'}=60^0.\) Tính số đo các góc \(yOt, tOt'.\)

Phương pháp giải - Xem chi tiết

Hướng dẫn :

• Trước hết tính góc \(yOt\). Chú ý hai góc kề bù \(\widehat {xOt}\) và \(\widehat {yOt}\).

• So sánh hai góc \(\widehat {yOt'}\) và \(\widehat {yOt}\) để thấy tia nào nằm giữa trong ba tia \(Oy,\,Ot',\,Ot.\)

• Viết hệ thức giữa các góc \(\widehat {yOt'};\,\widehat {yOt}\) để tính \(\widehat {t'Ot}\).

Lời giải chi tiết

Ta có \(Ox,Oy\) là hai tia đối nhau nên \(\widehat {xOt}\) và \(\widehat {yOt}\) là hai góc kề bù.

Nên: \(\widehat{xOt}+\widehat{yOt}=180^0\)

\(\widehat{yOt}=180^\circ-\widehat{xOt}\) \(= 180^\circ-30^\circ=150^\circ \)

Hai tia \(Ot'\) và \(Ot\) cùng thuộc nửa mặt phẳng bờ \(Oy\) mà  \(\widehat{yOt'}<\widehat{yOt}\) (vì \(60^0<150^0)\) nên tia \(Ot'\) nằm giữa hai tia \(Oy\) và \(Ot,\) suy ra 

 \(\widehat{yOt'}+\widehat{t'Ot}=\widehat{tOy}\) 

Thay số ta được:  \(60^\circ+\widehat{t'Ot}=150^\circ\)

Suy ra: \(\widehat{t'Ot}=150^\circ-60^\circ=90^\circ\) 

Loigiaihay.com


Bình chọn:
4.4 trên 12 phiếu

>> Xem thêm

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả.