Câu 4.71 trang 114 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.71 trang 114 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình :

 

LG a

 \(9{ {x}} + \sqrt {3{ {x}} - 2}  = 10\)

 

Lời giải chi tiết:

Phương trình được biến đổi thành

\(3\left( {3{ {x}} - 2} \right) + \sqrt {3{ {x}} - 2}  - 4 = 0\,\,\,\,\,\,\,\,\,\,\,\left( * \right)\)

Đặt \(t = \sqrt {3{ {x}} - 2}  \ge 0,\) khi đó (*) trở thành \(3{t^2} + t - 4 = 0\) Giải ra có hai nghiệm \({t_1} = 1,{t_2} =  - \dfrac{4}{3}.\)

Do \(t ≥ 0,\) nên chỉ lấy \(t = 1.\) Vậy (*) \( \Leftrightarrow \sqrt {3{ {x}} - 2}  = 1 \Leftrightarrow { {x}} = 1.\) Phương trình đã cho có nghiệm duy nhất \(x = 1.\)

 

LG b

 \(\sqrt { - {x^2} + 2{ {x}} + 4}  = x - 2\)

 

Lời giải chi tiết:

\(x = 3\).

Hướng dẫn. Phương trình tương đương với hệ:

\(\left\{ {\begin{array}{*{20}{c}}{ - {x^2} + 2{ {x}} + 4 = {{\left( {{ {x}} - 2} \right)}^2}}\\{x - 2 \ge 0}\end{array}} \right.\)

 

LG c

\(\sqrt {{{ {x}}^2} - 2{ {x}} - 3}  = 2{ {x}} + 3\)

 

Lời giải chi tiết:

\(x = \dfrac{{ - 7 + \sqrt {13} }}{3}.\) Hướng dẫn. Phương trình đã cho tương đương với hệ

\(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 2{ {x}} - 3 = {{\left( {2{ {x}} + 3} \right)}^2}}\\{2{ {x}} + 3 \ge 0}\end{array}} \right.\)

 

LG d

\(\sqrt {9 - 5{ {x}}}  = \sqrt {3 - x}  + \dfrac{6}{{\sqrt {3 - x} }}\)

 

Lời giải chi tiết:

\(x = -3\).

Hướng dẫn. Phương trình tương đương với

\(\left\{ {\begin{array}{*{20}{c}}{\sqrt {\left( {9 - 5{ {x}}} \right)\left( {3 - x} \right)}  = 9 - x}\\{x \le \dfrac{9}{5}.}\end{array}} \right.\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.