Câu 4.64 trang 113 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.64 trang 113 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ bất phương trình và biểu hiện tập nghiệm của chúng trên trục số:

 

LG a

\(\left\{ \begin{array}{l}{x^2} - 4{ {x}} - 5 < 0\\{x^2} - 6{ {x}} + 8 > 0\\2{ {x}} - 3 \ge 0\end{array} \right.\)

 

Lời giải chi tiết:

Phương trình \({x^2} - 4{ {x}} - 5 = 0\) có hai nghiệm \({x_1} =  - 1;{x_2} = 5,\) nên bất phương trình \({x^2} - 4{ {x}} - 5 < 0\) có tập nghiệm \({S_1} = \left( { - 1;5} \right).\)

Phương trình \({x^2} - 6{ {x}} + 8 = 0\) có hai nghiệm \({x_1} = 2;{x_2} = 4,\) nên bất phương trình \({x^2} - 6{ {x}} + 8 > 0\) có tập nghiệm \({S_2} = \left( { - \infty ;2} \right) \cup \left( {4; + \infty } \right).\)

Nghiệm của bất phương trình \(2{ {x}} - 3 \ge 0\) là \({S_3} = \left[ {\dfrac{3}{2}; + \infty } \right).\)

Suy ra nghiệm của hệ là giao của ba tập \({S_1},{S_2},{S_3},\) tức là

\(S = {S_1} \cap {S_2} \cap {S_3} = \left[ {\dfrac{3}{2};2} \right) \cup \left( {4;5} \right).\)

Biểu diễn trên trục số :

 

LG b

\(\left\{ \begin{array}{l}{x^2} - 12{ {x}} - 64 < 0\\{x^2} - 8{ {x + 15 > 0}}\\ - \dfrac{3}{4} \le x \le \dfrac{{13}}{2}.\end{array} \right.\)

 

Lời giải chi tiết:

 \(S = \left[ { - \dfrac{3}{4};3} \right) \cup \left( {5;\dfrac{{13}}{2}} \right].\) Biểu diễn trên trục số :

Loigiaihay.com

 

Bình chọn:
3.8 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí