Bài 9 trang 9 SGK Đại số và Giải tích 12 Nâng cao


Hướng dẫn: Chứng minh hàm số đồng biến trên nửa khoảng

Đề bài

Chứng minh rằng: \(\sin x + \tan x > 2x\) với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\).

Phương pháp giải - Xem chi tiết

Chứng minh hàm số \(f\left( x \right) = \sin x + \tan x - 2x\) đồng biến trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\).

Lời giải chi tiết

Xét hàm số \(f\left( x \right) = \sin x + \tan x - 2x\) 

Ta có: f(x) liên tục trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\) và có đạo hàm: \(f'\left( x \right) = \cos x + {1 \over {{{\cos }^2}x}}\, - 2\)

Vì \(x \in \left( {0;{\pi  \over 2}} \right)\) nên \(0 < \cos x < 1 \Rightarrow \cos x > {\cos ^2}x\)

\( \Rightarrow \cos x + {1 \over {{{\cos }^2}x}} - 2 \) \(> {\cos ^2}x + {1 \over {{{\cos }^2}x}}\, - 2 \)

\( \ge 2\sqrt {{{\cos }^2}x.\frac{1}{{{{\cos }^2}x}}}  - 2 = 2 - 2 = 0\)

Do đó \(f'\left( x \right) > 0\) với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\)

Suy ra hàm số \(f\) đồng biến trên \(\,\left[ {0;{\pi  \over 2}} \right)\)

Khi đó ta có \(f\left( x \right) > f\left( 0 \right) = 0\) với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\)

\(\begin{array}{l}
\Rightarrow \sin x + \tan x - 2x > 0\\
\Leftrightarrow \sin x + \tan x > 2x
\end{array}\)

với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\).

Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài