Bài 8 trang 8 SGK Đại số và Giải tích 12 Nâng cao


Chứng minh các bất đẳng thức sau:

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các bất đẳng thức sau:

LG a

\(\sin x < x\) với mọi \(x > 0,\sin x > x\) với mọi \(x < 0\)

Lời giải chi tiết:

Xét hàm số \(f\left( x \right) = x - \sin x\) liên tục trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\)

Đạo hàm \(f'\left( x \right) = 1 - \cos x > 0\) với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\).

Do đó hàm số đồng biến trên \(\left[ {0;{\pi  \over 2}} \right)\)

Từ đó với mọi \(x \in \left( {0;{\pi  \over 2}} \right)\) ta có:

\(f\left( x \right) > f\left( 0 \right) = 0 \)

\(\Rightarrow x - \sin x > 0\,\,\forall x \in \left( {0;{\pi  \over 2}} \right)\).

\( \Leftrightarrow x > \sin x,\forall x \in \left( {0;\frac{\pi }{2}} \right)\)

Với \(x \ge {\pi  \over 2}\) thì \(x > 1 \ge \sin x\).

Vậy \(\sin x < x\) với mọi \(x > 0\)

Xét hàm số f(x) = x – sin x trên \(\left( { - \frac{\pi }{2};0} \right]\)

Đạo hàm f’(x) = 1 - cos x > 0 \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)

Do đó hàm số đồng biến trên \(\left( { - \frac{\pi }{2};0} \right]\)

⇒ f(x) < f(0) hay x- sin x < 0

\( \Leftrightarrow x < \sin x,\forall x \in \left( { - \frac{\pi }{2};0} \right]\)

+ Hiển nhiên: x < sin x với mọi \(x \le  - \frac{\pi }{2}\)

(vì \(x \le  - \frac{\pi }{2} <  - 1 \le \sin x\))

Do đó x < sin x với mọi x < 0.

Cách giải thích khác:

* Với mọi \(x<0\), áp dụng chứng minh ở trường hợp x > 0 ta có:

\(\sin \left( { - x} \right) <  - x \) (do x < 0 thì -x > 0)

\(\Rightarrow  - \sin x <  - x \Rightarrow \sin x > x\)

Vậy \(\sin x > x\) với mọi \(x<0\).

LG b

\(\cos x > 1 - {{{x^2}} \over 2}\) với mọi \(x \ne 0\)

Lời giải chi tiết:

Hàm số \(g\left( x \right) = \cos x + {{{x^2}} \over {2 }}-1\) liên tục trên \(\left[ {0; + \infty } \right)\) và có đạo hàm \(g'\left( x \right) = x - \sin x\)

Theo câu a) \(g'\left( x \right) > 0\) với mọi \(x>0\) nên hàm số g đồng biến trên \(\left[ {0; + \infty } \right)\), khi đó ta có

\(g\left( x \right) > g\left( 0 \right) = 0\) với mọi \(x>0\), tức là \(\cos x + {{{x^2}} \over 2} - 1 > 0\) với mọi \(x>0\)

hay \(\cos x > 1 - {{{x^2}} \over 2}\) với mọi \(x>0\) (1)

Với mọi x < 0 thì -x > 0 nên theo (1) ta có:

\(\cos \left( { - x} \right) > 1 - {{{{\left( { - x} \right)}^2}} \over 2}\)

\(\Leftrightarrow \cos x > 1 - \,{{{x^2}} \over 2}\) với mọi \(x < 0\)

 

Vậy \(\cos x > 1 - \,{{{x^2}} \over 2}\) với mọi \(x \ne 0\).

Cách khác:

g’(x) = x – sin x

g'(x)=0 \(\Leftrightarrow\) x- sin x = 0

⇔ x = 0

Theo câu a ta có bảng biến thiên:

Từ bbt ta thấy \(g\left( x \right) > 0,\forall x \ne 0 \) \(\Leftrightarrow \cos x > 1 - \frac{{{x^2}}}{2},\forall x \ne 0\)

LG c

\(\sin x > x - {{{x^3}} \over 6}\) với mọi \(x > 0\); \(\sin x < x - {{{x^3}} \over 6}\) với mọi \(x<0\).

Lời giải chi tiết:

Hàm số \(h\left( x \right) = \sin x - x + {{{x^3}} \over 6}\) có đạo hàm \(h'(x) = \cos x - 1 + {{{x^2}} \over 2} > 0\) với mọi \(x \ne 0\) (câu b)

Do đó \(h\) đồng biến trên \(\mathbb R\) nên ta có:

\(h\left( x \right) > h\left( 0 \right) = 0,\forall x > 0\) và \(h\left( x \right) < h\left( 0 \right) = 0,\forall x < 0\)

Từ đó suy ra: \(\sin x > x - {{{x^3}} \over 6}\) với mọi \(x>0\)

\(\sin x < x - {{{x^3}} \over 6}\)với mọi \(x<0\)

Loigiaihay.com


Bình chọn:
3.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài