Bài 2 trang 7 SGK Đại số và Giải tích 12 Nâng cao


Chứng minh rằng: a) Hàm số đồng biến trên mỗi khoảng xác định của nó; b)Hàm số nghịch biến trên mỗi khoảng xác định của nó.

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng:

LG a

Hàm số \(y = {{x - 2} \over {x + 2}}\) đồng biến trên mỗi khoảng xác định của nó;

Lời giải chi tiết:

Tập xác định \(D =\mathbb R\backslash \left\{ { - 2} \right\}\)

\(\begin{array}{l}
y' = \frac{{\left( {x - 2} \right)'\left( {x + 2} \right) - \left( {x - 2} \right)\left( {x + 2} \right)'}}{{{{\left( {x + 2} \right)}^2}}}\\
= \frac{{1.\left( {x + 2} \right) - \left( {x - 2} \right).1}}{{{{\left( {x + 2} \right)}^2}}}\\
= \frac{{  4}}{{{{\left( {x + 2} \right)}^2}}} > 0,\forall x \ne - 2
\end{array}\)

Do đó, hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).

LG b

Hàm số \(y = {{ - {x^2} - 2x + 3} \over {x + 1}}\) nghịch biến trên mỗi khoảng xác định của nó.

Lời giải chi tiết:

Tập xác định \(D =\mathbb R\backslash \left\{ { - 1} \right\}\)

\(y' = \frac{{\left( { - {x^2} - 2x + 3} \right)'\left( {x + 1} \right) - \left( { - {x^2} - 2x + 3} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}}\)

\(= {{\left( { - 2x - 2} \right)\left( {x + 1} \right) - \left( { - {x^2} - 2x + 3} \right)} \over {{{\left( {x + 1} \right)}^2}}} \)

\(= {{ - {x^2} - 2x - 5} \over {{{\left( {x + 1} \right)}^2}}}  = \frac{{ - \left( {{x^2} + 2x + 1} \right) - 4}}{{{{\left( {x + 1} \right)}^2}}} \) \(= \frac{{ - {{\left( {x + 1} \right)}^2} - 4}}{{{{\left( {x + 1} \right)}^2}}}< 0\) với mọi \(x \ne  - 1\).

Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

Loigiaihay.com


Bình chọn:
3.6 trên 10 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài