Bài 4 trang 8 SGK Đại số và Giải tích 12 Nâng cao


Đề bài

Với các giá trị nào của a hàm số \(y = ax - {x^3}\) nghịch biến trên \(\mathbb R\)

Phương pháp giải - Xem chi tiết

- Tìm y'.

- Hàm số nghịch biến trên R khi và chỉ khi y'\(\le 0\) với mọi x.

Chú ý: Sử dụng định lý về dấu của tam thức bậc hai:

\(a{x^2} + bx + c \le 0\left( {a \ne 0} \right),\forall x \in R\) \(\Leftrightarrow \left\{ \begin{array}{l}
a < 0\\
\Delta \le 0
\end{array} \right.\)

Lời giải chi tiết

Cách 1:

Tập xác định \(D=\mathbb R\)

\(y' = a - 3{x^2}\)

Hàm số nghịch biến trên \(\mathbb{R}\) \( \Leftrightarrow y' \le 0,\forall x \in \mathbb{R}\)

\(\begin{array}{l} \Leftrightarrow  - 3{x^2} + a \le 0,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l} - 3 < 0\\\Delta  = {0^2} - 4.\left( { - 3} \right).a \le 0\end{array} \right.\\ \Leftrightarrow 12a \le 0\\ \Leftrightarrow a \le 0\end{array}\)

Cách 2. Hàm số nghịch biến trên R, điều kiện y'≤0,∀x ∈R,y'=0 chỉ tại một số hữu hạn điểm.

Ta có: y'≤0 ⇔ a-3x2≤0, ∀x

⇔ 3x2 ≥ a, ∀x ∈R

⇔ a≤min(3x2 ), mà 3x2≥0 ∀x ∈R

Nên \(\mathop {\min }\limits_\mathbb{R} \left( {3{x^2}} \right) = 0\). Vậy \(a \le 0\).

Kết luận: với a≤0 thì y=ax-3x3 nghịch biến trên R.

Cách 3:

Tập xác định \(D=\mathbb R\)

\(y' = a - 3{x^2}\)

• Nếu \(a < 0\) thì \(y' < 0\) với mọi \(x \in {\mathbb R}\), khi đó hàm số nghịch biến trên \(\mathbb R\).

• Nếu \(a = 0\) thì \(y' =  - 3{x^2} \le 0\) với mọi \(x \in {\mathbb R}\), \(y'=0\Leftrightarrow x=0\).

Vậy hàm số nghịch biến trên \(\mathbb R\).

• Nếu \(a > 0\) thì \(y' = 0\) \( \Leftrightarrow x =  \pm {\sqrt {a  \over 3}}\)

Ta có bảng biến thiên

Trong trường hợp này, hàm số không đồng biến trên  \({\mathbb R}\)

Vậy hàm số nghịch biến trên \({\mathbb R}\) khi và chỉ khi \(a \le 0\).

Loigiaihay.com


Bình chọn:
3.6 trên 12 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài