Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 3. Dạng lượng giác của số phức và ứng dụng
Bài 36 trang 207 SGK giải tích 12 nâng cao>
Viết dạng lượng giác của các số phức:
Viết dạng lượng giác của các số phức sau:
LG a
\(1 - i\tan {\pi \over 5}\)
Phương pháp giải:
Dạng lượng giác của số phức \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\)
Lời giải chi tiết:
\(1 - i\tan {\pi \over 5} \) \(= 1 - i{{\sin {\pi \over 5}} \over {\cos {\pi \over 5}}}\) \( = {1 \over {\cos {\pi \over 5}}}\left( {\cos {\pi \over 5} - i\sin {\pi \over 5}} \right) \) \(= {1 \over {\cos {\pi \over 5}}}\left[ {\cos \left( { - {\pi \over 5}} \right) + i\sin \left( { - {\pi \over 5}} \right)} \right]\)
LG b
\(\tan {{5\pi } \over 8} + i;\)
Lời giải chi tiết:
\(\tan {{5\pi } \over 8} + i \) \( = \frac{{\sin \frac{{5\pi }}{8}}}{{\cos \frac{{5\pi }}{8}}} + i \) \(= \frac{1}{{\cos \frac{{5\pi }}{8}}}\left( {\sin \frac{{5\pi }}{8} + i\cos \frac{{5\pi }}{8}} \right)\) \(= {{ - 1} \over {\cos {{5\pi } \over 8}}}\left( { - \sin {{5\pi } \over 8} - i\cos {{5\pi } \over 8}} \right)\)
(do \(\cos {{5\pi } \over 8} < 0\))
\( = {1 \over {\cos {{3\pi } \over 8}}}\left( -{\cos {\pi \over 8} + i\sin {\pi \over 8}} \right) \) \(= {1 \over {\cos {{3\pi } \over 8}}}\left( {\cos {{7\pi } \over 8} + i\sin {{7\pi } \over 8}} \right)\)
LG c
\({\mkern 1mu} 1 - \cos \varphi - i\sin \varphi {\mkern 1mu} \) \( \left( {\varphi \in\mathbb R,{\mkern 1mu} \varphi \ne k2\pi ,{\mkern 1mu} k \in\mathbb Z} \right){\rm{ }}\)
Lời giải chi tiết:
\(1 - \cos \varphi - i\sin \varphi \) \(= 2\sin^2 {\varphi \over 2} - 2i\sin {\varphi \over 2}\cos {\varphi \over 2} \) \(= 2\sin {\varphi \over 2}\left[ {\sin {\varphi \over 2} - i\cos {\varphi \over 2}} \right]\)
Khi \(\sin {\varphi \over 2} > 0\) thì \(\,1 - \cos \varphi - i\sin \varphi \) \(= {2\sin {\varphi \over 2}} \left[ {\cos \left( {{\varphi \over 2} - {\pi \over 2}} \right) +i\sin\left( {{\varphi \over 2} - {\pi \over 2}} \right)} \right]\) là dạng lượng giác cần tìm.
Khi \(\sin {\varphi \over 2} < 0\) thì \(\,1 - \cos \varphi - i\sin \varphi \) \(= \left( { - 2\sin {\varphi \over 2}} \right)\left[ {\cos \left( {{\varphi \over 2} + {\pi \over 2}} \right) + i\sin \left( {{\varphi \over 2} + {\pi \over 2}} \right)} \right]\) là dạng lượng giác cần tìm.
Còn khi \(\sin {\varphi \over 2} = 0\) thì \(\,\,1 - \cos \varphi - i\sin \varphi = 0 = 0\left( {\cos \alpha + i\sin \alpha } \right)\,\,(\alpha \in\mathbb R\)tùy ý).
Loigiaihay.com




