Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 3. Dạng lượng giác của số phức và ứng dụng
Bài 28 trang 205 SGK Giải tích 12 Nâng cao>
Viết các số phức sau dưới dạng lượng giác
Viết các số phức sau dưới dạng lượng giác:
LG a
\(\eqalign{1 - i\sqrt 3 ;1 + i;(1 - i\sqrt 3 )(1 + i);{{1 - i\sqrt 3 } \over {1 + i}}}\)
Phương pháp giải:
Sử dụng các công thức nhân chia dạng lượng giác của số phức:
\(\begin{array}{l}
{z_1} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right)\\
{z_2} = {r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right)\\
\Rightarrow {z_1}{z_2} = {r_1}{r_2}\left[ {\cos \left( {{\varphi _1} + {\varphi _2}} \right) + i\sin \left( {{\varphi _1} + {\varphi _2}} \right)} \right]\\
\frac{{{z_1}}}{{{z_2}}} = \frac{{{r_1}}}{{{r_2}}}\left[ {\cos \left( {{\varphi _1} - {\varphi _2}} \right) + i\sin \left( {{\varphi _1} - {\varphi _2}} \right)} \right]
\end{array}\)
Lời giải chi tiết:
\(\eqalign{&1 - i\sqrt 3 = 2\left( {{1 \over 2} - {{\sqrt 3 } \over 2}i} \right) \cr &= 2\left( {\cos \left( { - {\pi \over 3}} \right) + i\sin \left( { - {\pi \over 3}} \right)} \right);\cr
& 1 + i = \sqrt 2 \left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i} \right) \cr & = \sqrt 2 \left( {\cos \left( {{\pi \over 4}} \right) + i\sin \left( {{\pi \over 4}} \right)} \right);\, \cr
& (1 - i\sqrt 3 )(1 + i) \cr & = 2\sqrt 2 \left( {{1 \over 2} - {{\sqrt 3 } \over 2}i} \right)\left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i} \right) \cr
& = 2\sqrt 2 \left( {\cos \left( { - {\pi \over 3}} \right) + i\sin \left( { - {\pi \over 3}} \right)} \right)\left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right) \cr
&= 2\sqrt 2 \left[ {\cos \left( {{\pi \over 4} - {\pi \over 3}} \right) + i\sin \left( {{\pi \over 4} - {\pi \over 3}} \right)} \right] \cr
& = 2\sqrt 2 \left[ {\cos \left( { - {\pi \over {12}}} \right) + i\sin \left( { - {\pi \over {12}}} \right)} \right];\,\, \cr
& {{1 - i\sqrt 3 } \over {1 + i}} \cr & = \frac{{2\left( {\cos \left( { - \frac{\pi }{3}} \right) + i\sin \left( { - \frac{\pi }{3}} \right)} \right)}}{{\sqrt 2 \left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)}}\cr &=\frac{2}{{\sqrt 2 }} \left[ {\cos \left( { - {\pi \over 3} - {\pi \over 4}} \right) + i\sin \left( { - {\pi \over 3} - {\pi \over 4}} \right)} \right] \cr
& = \sqrt 2 \left[ {\cos \left( { - {7 \over {12}}\pi } \right) + i\sin \left( { - {7 \over {12}}\pi } \right)} \right]; \cr} \)
LG b
\(\eqalign{2i\left( {\sqrt 3 - i} \right)} \)
Lời giải chi tiết:
\(\eqalign{
& 2i =2\left( {0 + i} \right)= 2\left( {\cos {\pi \over 2} + i\sin {\pi \over 2}} \right) \cr
& {\sqrt 3 - i} = 2\left( {{{\sqrt 3 } \over 2} - {1 \over 2}i} \right) \cr &= 2\left[ {\cos \left( { - {\pi \over 6}} \right) + i\sin \left( { - {\pi \over 6}} \right)} \right]; \cr
& 2i\left( {\sqrt 3 - i} \right) \cr &= 4\left[ {\cos \left( {{\pi \over 2} - {\pi \over 6}} \right) + i\sin \left( {{\pi \over 2} - {\pi \over 6}} \right)} \right] \cr
& = 4\left[ {\cos \left( {{\pi \over 3}} \right) + i\sin \left( {{\pi \over 3}} \right)} \right] } \)
Cách khác:
\(\begin{array}{l}
2i\left( {\sqrt 3 - i} \right) = 2i\sqrt 3 - 2{i^2}\\
= 2\sqrt 3 i + 2 = 4\left( {\frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right)\\
= 4\left( {\cos \frac{\pi }{3} + i\sin \frac{\pi }{3}} \right)
\end{array}\)
LG c
\(\eqalign{{1 \over {2 + 2i}}} \)
Lời giải chi tiết:
\(\eqalign{
& 2 + 2i = 2\sqrt 2 \left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i} \right) \cr &= 2\sqrt 2 \left( {\cos {\pi \over 4} + i\sin {\pi \over 4}} \right)\, \cr
& \Rightarrow {1 \over {2 + 2i}} \cr &= {1 \over {2\sqrt 2 }}\left[ {\cos \left( { - {\pi \over 4}} \right) + i\sin \left( { - {\pi \over 4}} \right)} \right] \cr} \)
Cách khác:
\(\begin{array}{l}
\frac{1}{{2 + 2i}} = \frac{{2 - 2i}}{{{2^2} + {2^2}}} = \frac{1}{4} - \frac{1}{4}i\\
= \frac{1}{4}\left( {1 - i} \right)\\
= \frac{1}{4}.\sqrt 2 \left( {\frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}i} \right)\\
= \frac{{\sqrt 2 }}{4}\left( {\cos \left( { - \frac{\pi }{4}} \right) + i\sin \left( { - \frac{\pi }{4}} \right)} \right)
\end{array}\)
LG d
\(\eqalign{z = \sin \varphi + i\cos \varphi \,(\varphi \in\mathbb R)}\)
Lời giải chi tiết:
\(\eqalign{
& z = \,\sin \varphi + i\cos \varphi \cr & =\cos \left( {{\pi \over 2} - \varphi } \right) + i\sin\left( {{\pi \over 2} - \varphi } \right)\cr &(\varphi \in \mathbb R) \cr} \)
Loigiaihay.com




