Bài 32 trang 207 SGK giải tích 12 nâng cao


Đề bài

Sử dụng công thức Moa-vrơ để tính \(\sin 4\varphi \) và \(\cos 4\varphi \) theo các lũy thừa của \(\sin \varphi \) và \(\cos \varphi \)

Phương pháp giải - Xem chi tiết

Công thức Moa-vrơ:

\(\begin{array}{l}
z = r\left( {\cos \varphi + \sin \varphi } \right)\\
\Rightarrow {z^n} = {r^n}\left( {\cos n\varphi + i\sin n\varphi } \right)
\end{array}\)

Lời giải chi tiết

Ta có: \(\cos 4\varphi  + i\sin 4\varphi  = {\left( {\cos \varphi  + i\sin \varphi } \right)^4}\)

\(\eqalign{  &  = {\cos ^4}\varphi  + 4\left( {{{\cos }^3}\varphi } \right)\left( {i\sin \varphi } \right) \cr &+ 6\left( {{{\cos }^2}\varphi } \right)\left( {{i^2}} \right){\sin ^2}\varphi  \cr &+ 4\left( {\cos \varphi } \right)\left( {{i^3}{{\sin }^3}\varphi } \right) \cr &+ {i^4}{\sin ^4}\varphi   \cr  &  = {\cos ^4}\varphi  - 6{\cos ^2}\varphi {\sin ^2}\varphi  + {\sin ^4}\varphi  \cr &+ \left( {4{{\cos }^3}\varphi \sin \varphi  - 4\cos \varphi {{\sin }^3}\varphi } \right)i. \cr} \)

Từ đó: \(\cos 4\varphi  = {\cos ^4}\varphi  - 6{\cos ^2}\varphi {\sin ^2}\varphi  + {\sin ^4}\varphi \)

\(\sin 4\varphi  = 4{\cos ^3}\varphi \sin \varphi  - 4\cos \varphi {\sin ^3}\varphi \)

 Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài