Bài 31 trang 206 SGK giải tích 12 nâng cao


Chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

Cho các số phức \({\rm{w}}= {{\sqrt 2 } \over 2}\left( {1 + i} \right)\) và \(\varepsilon  = {1 \over 2}\left( { - 1 + i\sqrt 3 } \right)\)

LG a

Chứng minh rằng \({z_o} = \cos {\pi  \over {12}} + i\sin {\pi  \over {12}},\,{z_1} = {z_o}\varepsilon ,\) \({z_2} = {z_o}{\varepsilon ^2}\) là các nghiệm của phương trình \({z^3} - {\rm{w}} = 0;\)

Lời giải chi tiết:

Ta có: \(w = \cos {\pi  \over 4} + i\sin {\pi  \over 4}\)

\(\eqalign{  & \varepsilon  = \cos {{2\pi } \over 3} + i\sin {{2\pi } \over 3}\cr & \Rightarrow {\varepsilon ^3} = \cos 2\pi  + i\sin 2\pi  = 1  \cr  & z_o^3 = {\left( {\cos {\pi  \over {12}} + i\sin {\pi  \over {12}}} \right)^3} \cr &= \cos {\pi  \over 4} + i\sin {\pi  \over 4} ={\rm{w}}  \cr  & z_1^3 = {\left( {{z_o}\varepsilon } \right)^3} = z_o^3.{\varepsilon ^3} = {\rm{w}} \,\,\left( {\text{vì}\,\,\,{\varepsilon ^3} = 1} \right),  \cr  & z_2^3 = {\left( {z_o{\varepsilon ^2}} \right)^3} = z_o^3{\varepsilon ^6} = z_o^3 ={\rm{w}}\cr} \)

Do đó các số phức \({z_0},{z_0}\varepsilon ,{z_0}{\varepsilon ^2}\) đều là nghiệm của phương trình \(z^3-w=0\).

Cách khác:

\(\begin{array}{l}{z_0} = \cos \dfrac{\pi }{{12}} + i\sin \dfrac{\pi }{{12}}\\ \Rightarrow z_0^3 = \cos \dfrac{{3\pi }}{{12}} + i\sin \dfrac{{3\pi }}{{12}}\\ = \cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}\\ = \dfrac{{\sqrt 2 }}{2} + i.\dfrac{{\sqrt 2 }}{2}\\ = \dfrac{{\sqrt 2 }}{2}\left( {1 + i} \right) = w\\ \Rightarrow z_0^3 = w \Rightarrow z_0^3 - w = 0\end{array}\)

\( \Rightarrow {z_0} = \cos \dfrac{\pi }{{12}} + i\sin \dfrac{\pi }{{12}}\) là nghiệm của phương trình \({z^3} - w = 0\).

\(\begin{array}{l}\varepsilon  = \dfrac{1}{2}\left( { - 1 + i\sqrt 3 } \right) =  - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\\ = \cos \dfrac{{2\pi }}{3} + i\sin \dfrac{{2\pi }}{3}\\{z_0} = \cos \dfrac{\pi }{{12}} + i\sin \dfrac{\pi }{{12}}\\ \Rightarrow {z_1} = {z_0}\varepsilon \\ = \cos \left( {\dfrac{{2\pi }}{3} + \dfrac{\pi }{{12}}} \right) + i\sin \left( {\dfrac{{2\pi }}{3} + \dfrac{\pi }{{12}}} \right)\\ = \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}\\ \Rightarrow z_1^3 = \cos \dfrac{{9\pi }}{4} + i\sin \dfrac{{9\pi }}{4}\\ = \cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}\\ = \dfrac{{\sqrt 2 }}{2} + i.\dfrac{{\sqrt 2 }}{2} = w\\ \Rightarrow z_1^3 - w = 0\end{array}\)

\( \Rightarrow {z_1} = {z_0}\varepsilon \) là một nghiệm của phương trình \({z^3} - w = 0\).

\(\begin{array}{l}\varepsilon  = \cos \dfrac{{2\pi }}{3} + i\sin \dfrac{{2\pi }}{3}\\ \Rightarrow {\varepsilon ^2} = \cos \dfrac{{4\pi }}{3} + i\sin \dfrac{{4\pi }}{3}\\ \Rightarrow {z_2} = {z_0}{\varepsilon ^2}\\ = \cos \left( {\dfrac{\pi }{{12}} + \dfrac{{4\pi }}{3}} \right) + i\sin \left( {\dfrac{\pi }{{12}} + \dfrac{{4\pi }}{3}} \right)\\ = \cos \dfrac{{17\pi }}{{12}} + i\sin \dfrac{{17\pi }}{{12}}\\ \Rightarrow z_2^3 = \cos \dfrac{{17\pi }}{4} + i\sin \dfrac{{17\pi }}{4}\\ = \cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}\\ = \dfrac{{\sqrt 2 }}{2} + i.\dfrac{{\sqrt 2 }}{2} = w\\ \Rightarrow z_2^3 - w = 0\end{array}\)

\( \Rightarrow {z_2} = {z_0}{\varepsilon ^2}\) là một nghiệm của phương trình \({z^3} - w = 0\).

LG b

Biểu diễn hình học các số phức \({z_o},\,{z_1},\,{z_2}\)

Lời giải chi tiết:

Biểu diễn: Các điểm A, B, C lần lượt biểu diễn \({z_0},\,\,{z_1},\,\,{z_2}\)

\(\begin{array}{l}
{z_0} = \cos \frac{\pi }{{12}} + i\sin \frac{\pi }{{12}}\\
{z_1} = \cos \frac{{3\pi }}{4} + i\sin \frac{{3\pi }}{4}\\
{z_2} = \cos \frac{{17\pi }}{{12}} + i\sin \frac{{17\pi }}{{12}}
\end{array}\)

Nhận xét: A,B,C tạo thành một tam giác đều.

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài