Bài 35 trang 207 SGK giải tích 12 nâng cao


Viết dạng lượng giác của số phức z và của các căn bậc hai của z cho mỗi mỗi trường hợp sau:

Lựa chọn câu để xem lời giải nhanh hơn

Viết dạng lượng giác của số phức z và của các căn bậc hai của z cho mỗi mỗi trường hợp sau:

LG a

\(\left| z \right| = 3\) và một acgumen của iz là \({{5\pi } \over 4};\)

Phương pháp giải:

Giả sử z=r(cos\(\varphi \)+i sin\(\varphi \)), tìm acgumen của số phức iz, từ đó tìm \(\varphi \)

Lời giải chi tiết:

Giả sử z=r(cos\(\varphi \)+i sin\(\varphi \))

Vì |z| = 3 => r = 3

Ta có:

\(\begin{array}{l}i = \cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}\\ \Rightarrow iz = 3\left[ {\cos \left( {\varphi  + \dfrac{\pi }{2}} \right) + i\sin \left( {\varphi  + \dfrac{\pi }{2}} \right)} \right]\end{array}\)

Mà acgumen của \(iz\) bằng \(\dfrac{{5\pi }}{4}\) nên \(\varphi  + \dfrac{\pi }{2} = \dfrac{{5\pi }}{4} \Leftrightarrow \varphi  = \dfrac{{3\pi }}{4}\)

Vậy \(z = 3\left( {\cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}} \right)\).

Các căn bậc hai của z là \(\sqrt 3 \left( {\cos {{3\pi } \over 8} + i\sin {{3\pi } \over 8}} \right)\) và \(-\sqrt 3 \left( {\cos {{3\pi } \over 8} + i\sin {{3\pi } \over 8}} \right)\) hay \(\sqrt 3 \left( {\cos {{11\pi } \over 8} + i\sin {{11\pi } \over 8}} \right)\).

LG b

\(\left| z \right| = {1 \over 3}\) và một acgumen của \({{\overline z } \over {1 + i}}\) là \( - {{3\pi } \over 4}.\)

Phương pháp giải:

Giả sử z=r(cos\(\varphi \)+i sin\(\varphi \)), tìm acgumen của số phức \( \dfrac{{\overline z }}{{1 + i}}\), từ đó tìm \(\varphi \)

Lời giải chi tiết:

\(1 + i = \sqrt 2 \left( {{1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i} \right) \) \(= \sqrt 2 \left( {\cos {\pi  \over 4} + i\sin {\pi  \over 4}} \right)\)

Giả sử \(z = r\left( {\cos \varphi  + i\sin \varphi } \right)\)

\(\left| z \right| = \dfrac{1}{3} \Rightarrow r = \dfrac{1}{3}\)

\(\overline z  = r\left( {\cos \varphi  - i\sin \varphi } \right)\) \( = \dfrac{1}{3}\left( {\cos \varphi  - i\sin \varphi } \right)\) \( = \dfrac{1}{3}\left[ {\cos \left( { - \varphi } \right) + i\sin \left( { - \varphi } \right)} \right]\)

\(\begin{array}{l} \Rightarrow \dfrac{{\overline z }}{{1 + i}} = \dfrac{{\dfrac{1}{3}\left[ {\cos \left( { - \varphi } \right) + i\sin \left( { - \varphi } \right)} \right]}}{{\dfrac{{\sqrt 2 }}{2}\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)}}\\ = \dfrac{{\sqrt 2 }}{3}\left[ {\cos \left( { - \varphi  - \dfrac{\pi }{4}} \right) + i\sin \left( { - \varphi  - \dfrac{\pi }{4}} \right)} \right]\end{array}\)

Mà acgumen của \(\dfrac{{\overline z }}{{1 + i}}\) bằng \( - \dfrac{{3\pi }}{4}\) nên \( - \varphi  - \dfrac{\pi }{4} =  - \dfrac{{3\pi }}{4} \Leftrightarrow \varphi  = \dfrac{\pi }{2}\)

\( \Rightarrow z = \dfrac{1}{3}\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\)

Dạng lượng giác của căn bậc hai của z là:

\({1 \over {\sqrt 3 }}\left( {\cos {\pi  \over 4} + i\sin {\pi  \over 4}} \right)\) và \( - {1 \over {\sqrt 3 }}\left( {\cos {\pi  \over 4} + i\sin {\pi  \over 4}} \right) \) hay \({1 \over {\sqrt 3 }}\left( {\cos {{5\pi } \over 4} + i\sin {{5\pi } \over 4}} \right)\)

 Loigiaihay.com


Bình chọn:
3.3 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài