Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 3. Dạng lượng giác của số phức và ứng dụng
Bài 34 trang 207 SGK giải tích 12 nâng cao>
Tìm các số nguyên dương n để
Đề bài
Cho số phức \({\rm{w}} = - {1 \over 2}\left( {1 + i\sqrt 3 } \right)\). Tìm các số nguyên dương n để \({{\rm{w}}^n}\) là số thực. Hỏi có chăng một số nguyên dương m để \({{\rm{w}}^m}\) là số ảo?
Phương pháp giải - Xem chi tiết
- Biến đổi w về dạng lượng giác.
- Sử dụng công thức Moa-vrơ tính \(w^n\)
\(\begin{array}{l}
z = r\left( {\cos \varphi + \sin \varphi } \right)\\
\Rightarrow {z^n} = {r^n}\left( {\cos n\varphi + i\sin n\varphi } \right)
\end{array}\)
Lời giải chi tiết
Ta có: \(\rm{w} = - {1 \over 2} - {{\sqrt 3 } \over 2}i \) \(= \cos {{4\pi } \over 3} + i\sin {{4\pi } \over 3}\)
Suy ra \({\rm{w}^n} = \cos {{4\pi n} \over 3} + i\sin {{4\pi n} \over 3}\)
\({\omega ^n}\) là số thực \( \Leftrightarrow \sin {{4n\pi } \over 3} = 0 \Leftrightarrow {{4n\pi } \over 3} = k\pi \,\,\left( {k \in \mathbb Z} \right)\)
\( \Leftrightarrow 4n = 3k \)
\( \Leftrightarrow k = \frac{{4n}}{3} = n + \frac{n}{3} \in \mathbb{Z} \Rightarrow n \vdots 3\)
Vậy n chia hết cho 3 (n nguyên dương)
\({\rm{w} ^m}\) (m nguyên dương) là số ảo \( \Leftrightarrow \cos {{4m\pi } \over 3} = 0\) \( \Leftrightarrow {{4m\pi } \over 3} = {\pi \over 2} + k\pi \,\,\left( {k \in \mathbb Z} \right)\)
\( \Leftrightarrow 8m = 6k + 3\) (vô lí vì vế trái chẵn, vế phải lẻ).
Vậy không có số nguyên dương m để \({\rm{w} ^m}\) là số ảo.
Loigiaihay.com




