Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 4. Một số phương pháp tích phân
Bài 23 Trang 162 SGK Đại số và Giải tích 12 Nâng cao>
Tính trong các trường hợp sau:
Cho \(\int\limits_0^1 {f\left( x \right)dx = 3.} \) Tính \(\int\limits_{ - 1}^0 {f\left( x \right)} dx\) trong các trường hợp sau:
LG a
f là hàm số lẻ;
Phương pháp giải:
f là hàm số lẻ thì \(f\left( { - x} \right) = - f\left( x \right)\)
Lời giải chi tiết:
Tính \(\int\limits_{ - 1}^0 {f\left( x \right)} dx\).
Đặt \(x = - u \Rightarrow dx = - du\).
Đổi cận \(x = - 1 \Rightarrow u = 1,x = 0 \Rightarrow u = 0\)
\(\int\limits_{ - 1}^0 {f\left( x \right)dx} = \int\limits_1^0 {f\left( { - u} \right)\left( { - du} \right)} \)\( = \int\limits_0^1 {f\left( { - u} \right)du} = \int\limits_0^1 {\left[ { - f\left( u \right)} \right]du} \)
(do f là hàm số lẻ nên f(-u)=-f(u))
\( = - \int\limits_0^1 {f\left( u \right)du} = - \int\limits_0^1 {f\left( x \right)dx }= - 3. \)
LG b
f là hàm số chẵn.
Phương pháp giải:
f là hàm số chẵn thì \(f\left( { - x} \right) = f\left( x \right)\)
Lời giải chi tiết:
Tính \(\int\limits_{ - 1}^0 {f\left( x \right)} dx\)
Đặt \(x = - u \Rightarrow dx = - du\).
Đổi cận \(x = - 1 \Rightarrow u = 1,x = 0 \Rightarrow u = 0\).
\(\int\limits_{ - 1}^0 {f\left( x \right)dx = } \int\limits_{ 1}^0 {f\left( { - u} \right)\left( { - du} \right) }\)
\( = \int\limits_0^1 {f\left( { - u} \right)du} = \int\limits_0^1 { { f\left( u \right)} du} \) \( =\int\limits_0^1 {f\left( x \right)dx }= 3. \)
(do f là hàm số chẵn nên f(-u)=f(u))
Loigiaihay.com




