Bài 20 Trang 161 SGK Đại số và Giải tích 12 Nâng cao

Bình chọn:
3.7 trên 3 phiếu

Tính

Bài 20.Tính

a) \(\int\limits_0^\pi  {5{{\left( {5 - 4\cos t} \right)}^{{1 \over 4}}}} \sin tdt;\)               

b) \(\int\limits_0^{\sqrt 3 } {{{{x^3}dx} \over {\sqrt {{x^2} + 1} }}} .\)  

Giải

a) Đặt \(u = 5 - 4\cos t \Rightarrow du = 4\sin tdt \Rightarrow \sin tdt = {1 \over 4}du\)

\(\int\limits_0^\pi  {5{{\left( {5 - 4\cos t} \right)}^{{1 \over 4}}}} \sin tdt = {5 \over 4}\int\limits_1^9 {{u^{{1 \over 4}}}du = \left. {{u^{{5 \over 4}}}} \right|} _1^9 = {9^{{5 \over 4}}} - 1\)

b) Đặt \(u = \sqrt {{x^2} + 1}  \Rightarrow {u^2} = {x^2} + 1 \Rightarrow udu = xdx \Rightarrow {x^3}dx = {x^2}.xdx = \left( {{u^2} - 1} \right)udu\)

\(\int\limits_0^{\sqrt 3 } {{{{x^3}dx} \over {\sqrt {{x^2} + 1} }}}  = \int\limits_1^2 {{{\left( {{u^2} - 1} \right)u} \over u}} du\)

\(\int\limits_1^2 {\left( {{u^2} - 1} \right)du}  = \left. {\left( {{{{u^3}} \over 3} - u} \right)} \right|_1^2 = {4 \over 3}\)

loigiaihay.com

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan