Bài 19 Trang 161 SGK Đại số và Giải tích 12 Nâng cao


Tính

Lựa chọn câu để xem lời giải nhanh hơn

Tính  

LG a

\(\int\limits_0^1 {\sqrt {{t^5} + 2t} } \left( {2 + 5{t^4}} \right)dt;\)

Lời giải chi tiết:

Đặt \(u = \sqrt {{t^5} + 2t}  \Rightarrow {u^2} = {t^5} + 2t \) \(\Rightarrow 2udu = \left( {5{t^4} + 2} \right)dt\)

t

0

1

u

0

 \(\sqrt 3 \)

\(\int\limits_0^1 {\sqrt {{t^5} + 2t} } \left( {2 + 5{t^4}} \right)dt = \int\limits_0^{\sqrt 3 } {2{u^2}du}  \) \( = \left. {{{2{u^3}} \over 3}} \right| _0^{\sqrt 3 } \) \( = \dfrac{{2{{\left( {\sqrt 3 } \right)}^3}}}{3} - 0= 2\sqrt 3 \)

LG b

\(\int\limits_0^{{\pi  \over 2}} {x\sin {\rm{xcosx}}dx} .\) 

Lời giải chi tiết:

Ta có \(\displaystyle I = \int\limits_0^{{\pi  \over 2}} {x\sin x\cos xdx} \) \(\displaystyle = {1 \over 2} \int\limits_0^{{\pi  \over 2}} {x\sin 2xdx} \)

Đặt 

\(\displaystyle \left\{ \matrix{
u = x \hfill \cr 
dv = \sin 2xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr 
v = - {1 \over 2}\cos 2x \hfill \cr} \right.\)

Do đó \(\displaystyle I = \left. {{1 \over 2}\left( { - {1 \over 2}x\cos 2x} \right)} \right|_0^{{\pi  \over 2}} + {1 \over 4}\int\limits_0^{{\pi  \over 2}} {\cos 2xdx }\) \(\displaystyle  = \frac{1}{2}\left( { - \frac{1}{2}.\frac{\pi }{2}\cos \pi  - 0} \right) + \frac{1}{4}.\left. {\frac{1}{2}\sin 2x} \right|_0^{\frac{\pi }{2}}\) \(\displaystyle = {\pi  \over 8}  + \left. {{1 \over 8}\sin 2x} \right|_0^{{\pi  \over 2}} \) \(\displaystyle  = \frac{\pi }{8} + \frac{1}{8}\left( {\sin \pi  - \sin 0} \right)= {\pi  \over 8}\)

Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài