Bài 9 trang 123 SGK Hình học 12 Nâng cao


Trong không gian tọa độ Oxyz cho đường thẳng có phương trình a) Viết phương trình hình chiếu của trên các mặt phẳng tọa độ. b) Chứng minh rằng mặt phẳng đi qua đường thẳng . c) Tính khoảng cách giữa đường thẳng và các trục tọa độ. d) Viết phương trình đường vuông góc chung của hai đường thẳng và e) Viết phương trình đường thẳng song song với Oz, cắt cả và ’.

Lựa chọn câu để xem lời giải nhanh hơn

Trong không gian tọa độ Oxyz cho đường thẳng \(\Delta \) có phương trình \({{x - 1} \over 2} = {{y + 1} \over { - 1}} = {z \over 3}.\)

LG a

Viết phương trình hình chiếu của \(\Delta \) trên các mặt phẳng tọa độ.

Lời giải chi tiết:

Đường thẳng \(\Delta \) có phương trình tham số là:

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr 
y = - 1 - t \hfill \cr 
z = 3t \hfill \cr} \right.\)

Vì điểm M(x, y, z) có hình chiếu trên (Oxy) là M’(x, y, 0) nên hình chiếu \({d_1}\) của \(\Delta \) trên (Oxy) có phương trình tham số là 

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr 
y = - 1 + t \hfill \cr 
z = 0 \hfill \cr} \right.\)

Hình chiếu \({d_2}\) của \(\Delta \) trên (Oyz) là

\(\left\{ \matrix{
x = 0 \hfill \cr 
y = - 1 - t \hfill \cr 
z = 3t \hfill \cr} \right..\)

Hình chiếu \({d_3}\) của \(\Delta \) trên (Oxz) là 

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr 
y = 0 \hfill \cr 
z = 3t \hfill \cr} \right..\)

LG b

Chứng minh rằng mặt phẳng \(x + 5y + z + 4 = 0\) đi qua đường thẳng \(\Delta \).

Lời giải chi tiết:

Lấy điểm \(M\left( {1 + 2t, - 1 - t,3t} \right) \in \Delta ,\) thay tọa độ của M vào phương trình \(mp\left( \alpha  \right)\) ta có:
\(1 + 2t - 5\left( {1 + t} \right) + 3t + 4 = 0 \Rightarrow M \in \left( \alpha  \right).\)
Vậy \(\Delta  \subset \left( \alpha  \right),\) tức \(mp\left( \alpha  \right)\) đi qua \(\Delta \).

LG c

Tính khoảng cách giữa đường thẳng \(\Delta \) và các trục tọa độ.

Lời giải chi tiết:

\(\Delta \) qua điểm \(M\left( {1; - 1;0} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 1;3} \right).\)
Đường thẳng chứa trục Ox qua O(0; 0; 0) và có vectơ chỉ phương \(\overrightarrow i \left( {1;0;0} \right)\).
Khoảng cách giữa \(\Delta \) và trục Ox là:

\({h_1} = {{\left| {\left[ {\overrightarrow u ,\overrightarrow i } \right].\overrightarrow {OM} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow i } \right]} \right|}} = {{\left| { - 3} \right|} \over {\sqrt {{3^2} + {1^2}} }} = {{3\sqrt {10} } \over {10}}.\)

Khoảng cách giữa \(\Delta \) và trục Oy là:

\({h_2} = {{\left| {\left[ {\overrightarrow u ,\overrightarrow j } \right].\overrightarrow {OM} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow j } \right]} \right|}} = {{\left| { - 3} \right|} \over {\sqrt {{{\left( { - 3} \right)}^2} + {2^2}} }} = {{3\sqrt {13} } \over {13}}.\)

Khoảng cách giữa \(\Delta \) và trục Oz là:

\({h_3} = {{\left| {\left[ {\overrightarrow u ,\overrightarrow k } \right].\overrightarrow {OM} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow k } \right]} \right|}} = {{\left| 1 \right|} \over {\sqrt {{1^2} + {2^2}} }} = {{\sqrt 5 } \over 5}.\)

LG d

Viết phương trình đường vuông góc chung của hai đường thẳng \(\Delta \) và \(\Delta ':x = y = z.\)

Lời giải chi tiết:

Lấy \(P\left( {1 + 2t, - 1 - t,3t} \right) \in \Delta ,\,\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 1;3} \right).\)
\(Q\left( {t',t',t'} \right) \in \Delta ',\,\,\Delta '\) có vectơ chỉ phương \(\overrightarrow {u'} \left( {1;1;1} \right).\)
Ta có \(\overrightarrow {QP}  = \left( {1 + 2t - t', - 1 - t - t',3t - t'} \right).\)

PQ là đường vuông góc chung của \(\Delta \) và \(\Delta '\) khi và chỉ khi \(\overrightarrow {PQ}  \bot \overrightarrow u \) và \(\overrightarrow {PQ}  \bot \overrightarrow {u'} ,\) tức là:

\(\eqalign{
& \left\{ \matrix{
\overrightarrow {QP} .\overrightarrow u = 0 \hfill \cr 
\overrightarrow {QP} .\overrightarrow {u'} = 0 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{
2\left( {1 + 2t - t'} \right) - \left( { - 1 - t - t'} \right) + 3\left( {3t - t'} \right) = 0 \hfill \cr 
1 + 2t - t' - 1 - t - t' + 3t - t' = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
14t - 4t' = - 3 \hfill \cr 
4t - 3t' = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
t = - {9 \over {26}} \hfill \cr 
t' = - {6 \over {13}} \hfill \cr} \right.. \cr} \)

Do đó \(Q\left( { - {6 \over {13}}; - {6 \over {13}}; - {6 \over {13}}} \right)\) và \(\overrightarrow {QP}  = \left( {{{20} \over {16}},{{ - 5} \over {16}},{{ - 15} \over {16}}} \right) = {5 \over {16}}\left( {4; - 1; - 3} \right).\)

Đường thẳng PQ đi qua Q và có vectơ chỉ phương \(\overrightarrow v  = \left( {4; - 1; - 3} \right).\) 

Do đó PQ có phương trình tham số là: 

\(\left\{ \matrix{
x = - {6 \over {13}} + 4t \hfill \cr 
y = - {6 \over {13}} - t \hfill \cr 
z = - {6 \over {13}} - 3t \hfill \cr} \right..\)

LG e

Viết phương trình đường thẳng song song với Oz, cắt cả \(\Delta \) và ’\(\Delta '\).

Lời giải chi tiết:

Lấy điểm \(P\left( {1 + 2t, - 1 - t,3t} \right) \in \Delta .\)

\(Q\left( {t',t',t'} \right) \in \Delta '.\)

PQ // Oz \( \Leftrightarrow \overrightarrow {QP} \) cùng phương với 

\(\overrightarrow k = \left( {0;0;1} \right) \Leftrightarrow \left\{ \matrix{
1 + 2t - t' = 0 \hfill \cr 
- 1 - t - t' = 0 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{
t = - {2 \over 3} \hfill \cr 
t' = - {1 \over 3}. \hfill \cr} \right.\)

Vậy PQ đi qua \(Q\left( { - {1 \over 3}, - {1 \over 3}, - {1 \over 3}} \right)\) và có vectơ chỉ phương \(\overrightarrow k  = \left( {0;0;1} \right)\) nên PQ có phương trình tham số là: 

\(\left\{ \matrix{
x = - {1 \over 3} \hfill \cr 
y = - {1 \over 3} \hfill \cr 
z = - {1 \over 3} + t \hfill \cr} \right..\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 3 phiếu

Các bài liên quan: - I. Bài tập tự luận

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài