Bài 1 trang 122 SGK Hình học 12 Nâng cao


Đề bài

Cho hình lăng trụ ABC.A’B’C’ với cạnh bên không vuông góc với mặt đáy. Gọi \(\left( \alpha  \right)\) là mặt phẳng vuông góc với các cạnh bên của hình lăng trụ và cắt chúng tại P, Q, R. Phép tịnh tiến theo vectơ \(\overrightarrow {AA'} \) biến tam giác PQR thành tam giác P’Q’R’.
a) Chứng minh rằng thể tích V của hình lăng trụ đã cho bằng thể tích của hình lăng trụ PQR.P’Q’R’.
b) Chứng minh rằng \(V = {S_{PQR}}.AA'\), trong đó \({S_{PQR}}\) là diện tích tam giác PQR.

Lời giải chi tiết

a) Mp(PQR) chia khối lăng trụ ABC.A’B’C’ thành 2 khối đa diện \({H_1}\) và \({H_2}\) với \({H_1}\) chứa \(\Delta ABC\), \({H_2}\) chứa \(\Delta A'B'C'\)

Mp(A’B’C’) chia khối lăng trụ PQR.P’Q’R’ thành hai khối đa diện \({H_2}\) và \({H_3}\) với \({H_3}\) chứa \(\Delta P'Q'R'.\)
Gọi \({V_1},{V_2},{V_3}\) lần lượt là thể tích của các khối đa diện \({H_1},{H_2},{H_3}\) ta có:
\({V_{ABC.A'B'C'}} = {V_1} + {V_2},\) \({V_{PQR.P'Q'R'}} = {V_2} + {V_3}.\)
Phép tịnh tiến \(\overrightarrow {AA'} :\)

\(\eqalign{
& {T_{\overrightarrow {AA'} }}:\Delta ABC \to \Delta A'B'C' \cr 
& {T_{\overrightarrow {AA'} }}:\Delta PQR \to \Delta P'Q'R' \cr} \)

Suy ra \({T_{\overrightarrow {AA'} }}:{H_1} \to {H_3}\) do đó \({V_1} = {V_3}.\)
Vậy \({V_{ABC.A'B'C'}} = {V_{PQR.P'Q'R'}}.\)
b) Vì lăng trụ PQR.P’Q’R’ là lăng trụ đứng nên có chiều cao PP’ = AA’ nên

\({V_{ABC.A'B'C'}} = {V_{PQR.P'Q'R'}} \) \(= {S_{PQR}}.AA'.\)

Loigiaihay.com


Bình chọn:
3.8 trên 8 phiếu
  • Bài 2 trang 122 SGK Hình học 12 Nâng cao

    Cho tứ diện ABCD có thể tích V. Hãy tính thể tích hình tứ diện có đỉnh là trọng tâm các mặt của tứ diện đã cho.

  • Bài 3 trang 122 SGK Hình học 12 Nâng cao

    Cho hình hộp ABCD.A’B’C’D’ có thể tích V. Hãy tính thể tích của tứ diện ACB’D’.

  • Bài 4 trang 122 SGK Hình học 12 Nâng cao

    Chứng minh rằng trung điểm các cạnh của một hình tứ diện đều là các đỉnh của một hình tám mặt đều. Hãy so sánh thể tích của tứ diện đều đã cho và thể tích của hình tám mặt đều đó.

  • Bài 5 trang 122 SGK Hình học 12 Nâng cao

    Cho hình vuông ABCD nội tiếp đường tròn (O; R). Gọi H là hình gồm các điểm của hình tròn (O; R) nhưng không nằm trong hình vuông. Tính thể tích hình tròn xoay sinh bởi hình H khi quay quanh đường thẳng chứa một đường chéo của hình vuông.

  • Bài 6 trang 123 SGK Hình học 12 Nâng cao

    Cho hình lục giác đều ABCDEF cạnh a. a) Tính thể tích hình tròn xoay sinh bởi lục giác đó khi quay quanh đường thẳng AD. b) Tính thế tích hình tròn xoay sinh bởi lục giác đó khi quay quanh đường thẳng đi qua trung điểm của các cạnh AB và DE.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.