Bài 11 trang 124 SGK Hình học 12 Nâng cao


Trong không gian Oxyz, cho đường thẳng có phương trình trong đó a, b, c thay đổi sao cho a) Chứng minh rằng đường thẳng đi qua một điểm cố định, góc giữa và Oz là không đổi. b) Tìm quỹ tích các giao điểm của và mp(Oxy).

Lựa chọn câu để xem lời giải nhanh hơn

Trong không gian Oxyz, cho đường thẳng \(\Delta \) có phương trình 

\(\left\{ \matrix{
x = 1 + at \hfill \cr 
y = 1 + bt \hfill \cr 
z = 5 + ct \hfill \cr} \right.\) trong đó a, b, c thay đổi sao cho \({c^2} = {a^2} + {b^2}.\)

LG a

Chứng minh rằng đường thẳng \(\Delta \) đi qua một điểm cố định, góc giữa \(\Delta \) và Oz là không đổi.

Lời giải chi tiết:

\(\Delta \) đi qua điểm A(1; 1; 5) cố định.
\(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {a,b,c} \right).\)
Gọi \(\varphi \) là góc giữa \(\Delta \) và trục Oz.

Ta có:
\(\cos \varphi  = \left| {\cos \left( {\overrightarrow u ,\overrightarrow k } \right)} \right| = \left| {{c \over {\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|  \) \( = \left| {{c \over {c\sqrt 2 }}} \right|= {{\sqrt 2 } \over 2}.\)
Suy ra \(\varphi  = {45^0}.\)

LG b

Tìm quỹ tích các giao điểm của \(\Delta \) và mp(Oxy).

Lời giải chi tiết:

Vì \({c^2} = {a^2} + {b^2}\) nên \(c \ne 0\) (vì nếu c = 0 thì a = b = 0).
Gọi M(x, y, z) là giao điểm của \(\Delta \) và mp(Oxy) thì (x, y, z) thỏa mãn hệ phương trình:

\(\left\{ \matrix{
x = 1 + at \hfill \cr 
y = 1 + bt \hfill \cr 
z = 5 + ct \hfill \cr 
z = 0 \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
x - 1 = at \hfill \cr 
y - 1 = bt \hfill \cr 
t = - {5 \over c} \hfill \cr 
z = 0 \hfill \cr} \right..\)

Từ đó suy ra \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \left( {{a^2} + {b^2}} \right).{{25} \over {{c^2}}} = 25\) và z = 0.
Vậy quỹ tích điểm M là đường tròn tâm I(1; 1; 0) bán kính bằng 5 và nằm trong mp(Oxy).

Loigiaihay.com


Bình chọn:
3.5 trên 6 phiếu

Các bài liên quan: - I. Bài tập tự luận

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài