Bài 69 trang 113 SBT Hình học 10 Nâng cao


Giải bài tập Bài 69 trang 113 SBT Hình học 10 Nâng cao

Đề bài

Chứng minh rằng phép co về trục \(Ox\) theo hệ số \( \dfrac{b}{a} < 1\), biến đường tròn \((C): {x^2} + {y^2} = {a^2}\) thành elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\) và ngược lại, phép co về trục \(Oy\) theo hệ số \( \dfrac{a}{b} > 1\) biến elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\) thành đường tròn \((C): {x^2} + {y^2} = {a^2}\).

Lời giải chi tiết

\(M(x ; y) \in (C)    \Rightarrow {x^2} + {y^2} = {a^2}\). Ảnh \(M’\) của \(M\) qua phép co về trục \(Ox\) theo hệ số \( \dfrac{b}{a} < 1\) là \(\left\{ \begin{array}{l}{x_{M'}} = x\\{y_{M'}} =  \dfrac{b}{a}y\end{array} \right.  \\  \Rightarrow {a^2} = {x^2} + {y^2}\\ = x_{M'}^2 +  \dfrac{{{a^2}}}{{{b^2}}}y_{M'}^2  \\  \Leftrightarrow     \dfrac{{x_{M'}^2}}{{{a^2}}} +  \dfrac{{y_{M'}^2}}{{{b^2}}} = 1.\)

Vậy ảnh của đường tròn \((C)\) qua phép co về trục \(Ox\) theo hệ số \( \dfrac{b}{a} < 1\) là elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\).

Phần ngược lại chứng minh tương tự.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí