Bài 59 trang 110 SBT Hình học 10 Nâng cao


Giải bài tập Bài 59 trang 110 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Cho đường tròn \((C_1)\) tâm \(O_1\), bán kính \(R_1\) và đường tròn \((C_2)\) tâm \(O_2\), bán kính \(R_2\). Biết  đường tròn \((C_2)\) nằm trong đường tròn \((C_1)\) và tâm hai đường tròn không trùng nhau (h.84). Tìm tập hợp tâm của các đường tròn tiếp xúc ngoài với \((C_2)\) và tiếp xúc trong với \((C_1)\).

Lời giải chi tiết

(h.109).

 

Xét đường tròn \((C)\) tâm \(O\), tiếp xúc trong với \((C_1)\) tại \(M\), tiếp xúc ngoài với \((C_2)\) tại \(N\). Ta có:

\(O{O_1} + O{O_2}\)

\(= {O_1}M - OM + {O_2}N + ON \)

\(= {R_1} + {R_2}\) không đổi.

Tập hợp các tâm \(O\) là elip có các tiêu điểm là \(O_1, O_2\) và độ dài trục lớn \(2a=R_1+R_2\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!