Bài 68 trang 113 SBT Hình học 10 Nâng cao


Giải bài tập Bài 68 trang 113 SBT Hình học 10 Nâng cao

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Phép co về trục \(\Delta \) theo hệ  số \(k\,(k \ne 0)\) là phép cho tương đương mỗi điểm \(M\) của mặt phẳng thành điểm \(M’\) sao cho \(\overrightarrow {HM'}  = k\overrightarrow {HM} \), trong đó \(H\) là hình chiếu (vuông góc) của \(M\) trên \(\Delta \). Điểm \(M’\) gọi là ảnh của điểm \(M\) qua phép co đó. Chứng minh rằng

LG a

Phép co về trục \(Ox\) theo hệ số \(k\) biến điểm \(M\) thành điểm \(M’\) sao cho \(\left\{ \matrix{  {x_{M'}} = {x_M} \hfill \cr  {y_{M'}} = k{y_M} \hfill \cr}  \right.\);

Lời giải chi tiết:

\(\overrightarrow {HM'}  = k\overrightarrow {HM} \)

\(    \Leftrightarrow   \left\{ \begin{array}{l}{x_{M'}} - {x_H} = k({x_M} - {x_H})\\{y_{M'}} - {y_H} = k({y_M} - {y_H})\end{array} \right.\)

\(    \Leftrightarrow    \left\{ \begin{array}{l}{x_{M'}} = {x_M}\\{y_{M'}} = {y_M}.\end{array} \right.\)

(Chú ý rằng trong trường hợp này thì \({x_H} = {x_M} = {x_{M'}},  {y_H} = 0\)

LG b

Phép co về trục \(Oy\) theo hệ số \(k\) biến điểm \(M\) thành điểm \(M’\) sao cho \(\left\{ \matrix{  {x_{M'}} = k{x_M} \hfill \cr  {y_{M'}} = {y_M} \hfill \cr}  \right.\).

Lời giải chi tiết:

Tương tự câu a), với chú ý rằng trong phép co về trục \(Oy\) thì \({x_H} = 0,  {y_H} = {y_M} = {y_{M'}}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!