Bài 61 trang 56 SGK giải tích 12 nâng cao

Bình chọn:
3.3 trên 3 phiếu

Một viên đạn được bắn ra với vận tốc ban đầu từ một nòng súng đặt ở gốc tọa độ O, nghiêng một góc với mặt đất (nòng súng nằm trong mặt phẳng thẳng đứng Oxy và tạo với trục hoành Ox góc ). Biết quỹ đạo chuyển động của viên đạn là parabol.

Bài 61. Một viên đạn được bắn ra với vận tốc ban đầu \({v_o} > 0\) từ một nòng súng đặt ở gốc tọa độ \(O\), nghiêng một góc  \(\alpha \) với mặt đất (nòng súng nằm trong mặt phẳng thẳng đứng \(Oxy\) và tạo với trục hoành \(Ox\) góc \(\alpha \) ). Biết quỹ đạo chuyển động của viên đạn là parabol.

\(\left( {{\gamma _\alpha }} \right):y =  - {g \over {2v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right){x^2} + x\tan \alpha \) ( \(g\) là gia tốc trọng trường).

Chứng minh rằng với mọi \(\alpha  \in \left( {0;{\pi  \over 2}} \right),\,\left( {{\gamma _\alpha }} \right)\) luôn tiếp xúc với parabol \((P)\) có phương trình là: \(y =  - {g \over {2v_o^2}}{x^2} + {{v_o^2} \over {2g}}\) và tìm tọa độ tiếp điểm \((P)\) được gọi là parabol an toàn).

Giải

Hoành độ tiếp điểm của hai parabol là nghiệm của hệ phương trình:

\(\left\{ \matrix{
- {g \over {2v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right){x^2} + x\tan \alpha = - {g \over {2v_o^2}}{x^2} + {{v_o^2} \over {2g}} \hfill \cr
- {g \over {v_o^2}}\left( {1 + {{\tan }^2}\alpha } \right)x + \tan \alpha = - {g \over {v_o^2}}x \hfill \cr} \right.\)

Nghiệm của phương trình thứ hai của hệ là \(x = {{v_o^2} \over {g\tan \alpha }}\)

Ta có \(x = {{v_o^2} \over {g\tan \alpha }}\) cũng là nghiệm của phương trình thứ nhất của hệ. Vậy với mọi \(\alpha  \in \left( {0;{\pi  \over 2}} \right)\) hai parabol luôn tiếp xúc với nhau. Hoành độ tiếp điểm là \(x = {{v_o^2} \over {g\tan \alpha }}\). Tung độ của tiếp điểm là

\(y =  - {g \over {2v_o^2}}{\left( {{{v_o^2} \over {g\tan \alpha }}} \right)^2} + {{v_o^2} \over {2g}} = {{v_o^2} \over {2g}}\left( {1 - {1 \over {{{\tan }^2}\alpha }}} \right)\)

Điểm \(\left( {{{v_o^2} \over {g\tan \alpha }};{{v_o^2} \over {2g}}\left( {1 - {{\cot }^2}\alpha } \right)} \right)\) là tiếp điểm của hai parabol với mọi \(\alpha  \in \left( {0;{\pi  \over 2}} \right)\)

loigiaihay.com

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan