Bài 39 trang 97 SGK Đại số 10 nâng cao


Giải và biện luận các hệ phương trình

Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các hệ phương trình

LG a

\(\left\{ \matrix{
x + my = 1 \hfill \cr 
mx - 3my = 2m + 3 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{& D = \,\left|\matrix{
1 & m \cr m & { - 3m} \cr}\right |\, = - 3m - {m^2} = - m(m + 3) \cr & {D_x} = \left|\matrix{1 & m \cr {2m + 3} & { - 3m} \cr} \right |\, = - 3m - m(2m + 3) \cr&\;\;\;\;\;\;= - 2m(m + 3) \cr & {D_y} = \left|\matrix{1 & 1 \cr m & {2m + 3} \cr}\right  |\, = \,2m + 3 - m = m + 3 \cr} \)

+Nếu D ≠ 0 ⇔ m ≠ 0 và m ≠ -3 nên hệ có nghiệm duy nhất là:

\(\left\{ \matrix{
x = {{{D_x}} \over D} = {{ - 2m(m + 3)} \over { - m(m + 3)}} = 2 \hfill \cr 
y = {{{D_y}} \over D} = {{m + 3} \over { - m(m + 3)}} = - {1 \over m} \hfill \cr} \right.\) 

+ Nếu D = 0 

\( \Leftrightarrow \left[ \matrix{
m = 0 \hfill \cr 
m = - 3 \hfill \cr} \right.\)

i) Với m = 0, Dy = 3 ≠ 0: hệ vô nghiệm

ii) Với m = -3, hệ trở thành:

\(\left\{ \matrix{
x - 3y = 1 \hfill \cr 
- 3x + 9y = - 3 \hfill \cr} \right. \Leftrightarrow y = {{x - 1} \over 3}\)

Hệ có vô số nghiệm \((x;\,{{x - 1} \over 3})\) ; x ∈ R

LG b

\(\left\{ \matrix{
mx + y = 4 - m \hfill \cr 
2x + (m - 1)y = m \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& D = \,\left|\matrix{
m & 1 \cr 
2 & {m - 1} \cr}\right  |\, = m(m - 1) - 2 \cr&\;\;\;\;= {m^2} - m - 2 = (m + 1)(m - 2) \cr & {D_x} = \,\left|\matrix{{4 - m} & 1 \cr m & {m - 1} \cr}\right  |\, = (4 - m)(m - 1) - m \cr&\;\;\;\;= - {m^2} + 4m - 4 = - {(m - 2)^2} \cr & {D_y} = \,\left|\matrix{m & {4 - m} \cr 2 & m \cr}\right  |\, = \,{m^2} - 2(4 - m)  \cr&\;\;\;\;= {m^2} + 2m - 8 = (m - 2)(m + 4) \cr} \)

+ Nếu D ≠ 0 ⇔ m ≠ -1 và m ≠ 2 nên hệ có nghiệm duy nhất là:

\(\left\{ \matrix{
x = {{{D_x}} \over D} = {{ - {{(m - 2)}^2}} \over {(m + 1)(m - 2)}} = {{ - m + 2} \over {m + 1}} \hfill \cr 
y = {{{D_y}} \over D} = {{(m + 4)(m - 2)} \over {(m + 1)(m - 2)}} = {{m + 4} \over {m + 1}} \hfill \cr} \right.\)

+ Nếu D = 0 ⇔ m = -1 hoặc m = 2

i) m = -1; Dx ≠ 0. Hệ vô nghiệm

ii) m = 2, thế y = 2 – 2x. Hệ có vô số nghiệm (x; 2 – 2x); x ∈ R

Loigiaihay.com


Bình chọn:
3.4 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí