Bài 33 trang 94 SGK Đại số 10 nâng cao

Bình chọn:
3.4 trên 5 phiếu

Giải và biện luận các hệ phương trình

Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các hệ phương trình

LG a

\(\left\{ \matrix{
x - my = 0 \hfill \cr 
mx - y = m + 1 \hfill \cr} \right.\)

Giải chi tiết:

Ta có:

\(\eqalign{
& D = \left|\matrix{1  \;\;\;\;{ - m} \cr m \;\;\;\; { - 1} \cr} \right| \,\, = {m^2} - 1 \cr& {D_x} = \, \left|\matrix{0  \;\;\;\;\;\;\;{ - m} \cr {m + 1} \;\;\;\;\;{ - 1} \cr} \right| \, = m(m + 1) \cr & {D_y} = \,\left|\matrix{1 \;\;\;\;\;\;\; 0 \cr m \;\;\;\;\;\;\; {m + 1} \cr} \right| \, = m + 1 \cr} \) 

+ Với D ≠  0 ⇔ m ≠ ± 1 thì hệ có nghiệm duy nhất:

\(\left\{ \matrix{
x = {{{D_x}} \over D} = {{m(m + 1)} \over {{m^2} - 1}} = {m \over {m - 1}} \hfill \cr 
y = {{{D_y}} \over D} = {{m + 1} \over {{m^2} - 1}} = {1 \over {m - 1}} \hfill \cr} \right.\)

+ Với D = 0 ⇔ m = ± 1

i) m = 1, ta có Dx = 2 ≠ 0: Hệ phương trình vô nghiệm

ii) m = -1. Hệ trở thành: 

\(\left\{ \matrix{
x + y = 0 \hfill \cr 
- x - y = 0 \hfill \cr} \right. \Leftrightarrow y = - x\)

Hệ vô số nghiệm (x, -x) với x ∈ R

LG b

\(\left\{ \matrix{
2ax + 3y = 5 \hfill \cr 
(a + 1)x + y = 0 \hfill \cr} \right.\)

Giải chi tiết:

Ta có:

\(\eqalign{
& D = \,\left|\matrix{
{2a} \;\;\;\; \;\;3 \cr 
{a + 1} \;\;\;\; 1 \cr}\right|\, = 2a - 3(a + 1) = - (a + 3) \cr & {D_x} = \,\left|\matrix{5 & 3 \cr 0 & 1 \cr}\right| = 5 \cr & {D_y} = \left|\matrix{{2a} \;\;\; \;\;5 \cr {a + 1} \;\;\; 0 \cr}\right|= - 5(a + 1) \cr} \) 

+ Nếu a ≠ -3 thì hệ có nghiệm duy nhất: 

\(\left\{ \matrix{
x = {{{D_x}} \over D} = {{ - 5} \over {a + 3}} \hfill \cr 
y = {{{D_y}} \over D} = {{5(a + 1)} \over {a + 3}} \hfill \cr} \right.\)

+ Nếu a = -3 thì hệ vô nghiệm (do D =  0) 

Loigiaihay.com

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng