Bài 29 trang 96 SGK Hình học 10 Nâng cao>
Tìm tọa độ các giao điểm của hai đường tròn sau đây
Đề bài
Tìm tọa độ các giao điểm của hai đường tròn sau đây
\(\eqalign{
& (C):{x^2} + {y^2} + 2x + 2y - 1 = 0, \cr
& (C'):{x^2} + {y^2} - 2x + 2y - 7 = 0. \cr} \)
Phương pháp giải - Xem chi tiết
Giải hệ phương trình tọa độ giao điểm và kết luận.
Lời giải chi tiết
Tọa độ giao điểm của hai đường tròn thỏa mãn hệ phương trình:
\(\left\{ \begin{array}{l}
{x^2} + {y^2} + 2x + 2y - 1 = 0\,\,\,(1)\\
{x^2} + {y^2} - 2x + 2y - 7 = 0 \,\,\, (2)
\end{array} \right.\)
Lấy (1) trừ (2) vế với vế ta được:
\(4x + 6 = 0 \Leftrightarrow x = - {3 \over 2}.\)
Thay \(x = - {3 \over 2}\) vào (1) ta được:
\({9 \over 4} + {y^2} - 3 + 2y - 1 = 0 \) \(\Leftrightarrow {y^2} + 2y - {7 \over 4} = 0\)
\(\Leftrightarrow y = - 1 \pm {{\sqrt {11} } \over 2}\)
Tọa độ hai giao điểm của (C) và (C’) là:
\(\left( { - {3 \over 2}; - 1 - {{\sqrt {11} } \over 2}} \right);\,\,\,\left( { - {3 \over 2}; - 1 + {{\sqrt {11} } \over 2}} \right)\)
Loigiaihay.com
- Bài 28 trang 96 SGK Hình học 10 Nâng cao
- Bài 27 trang 96 SGK Hình học 10 Nâng cao
- Bài 26 trang 95 SGK Hình học 10 Nâng cao
- Bài 25 trang 95 SGK Hình học 10 Nâng cao
- Bài 24 trang 95 SGK Hình học 10 Nâng cao
>> Xem thêm