Bài 28 trang 96 SGK Hình học 10 Nâng cao


Đề bài

Xét vị trí tương đối của đường thẳng \(\Delta \) và đường tròn (C) sau đây 

\(\eqalign{
& \Delta :3x + y + m = 0, \cr 
& (C):{x^2} + {y^2} - 4x + 2y + 1 = 0. \cr} \)

Phương pháp giải - Xem chi tiết

Tính \(d\left( {I,\Delta } \right) \) và so sánh với R suy ra vị trí tương đối.

Lời giải chi tiết

(C) có tâm \(I(2, -1)\) và bán kính \(R = \sqrt {{2^2} + {1^2} - 1}  = 2.\)

Khoảng cách từ I đến \(\Delta \) là:

\(d\left( {I,\Delta } \right) = {{|3.2 - 1 + m|} \over {\sqrt {{3^2} + {1^2}} }} \) \(= {{|5 + m|} \over {\sqrt {10} }}\)

+) Nếu \(d\left( {I,\Delta } \right) > R\)

Hay \({{|5 + m|} \over {\sqrt {10} }} > 2 \Leftrightarrow |m + 5| > 2\sqrt {10}\)

\( \Leftrightarrow \left[ \begin{array}{l}
m + 5 < - 2\sqrt {10} \\
m + 5 > 2\sqrt {10}
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{
m < - 5 -2 \sqrt {10} \hfill \cr 
m > - 5 + 2\sqrt {10} \hfill \cr} \right.\)

thì \(\Delta \) và (C) không có điểm chung.

+) Nếu \(d\left( {I,\Delta } \right) = R\)

Hay \({{|5 + m|} \over {\sqrt {10} }} = 2 \Leftrightarrow |5 + m| = 2\sqrt {10} \) \( \Leftrightarrow m =  - 5 \pm 2\sqrt {10} \)

thì \(\Delta \) và (C) tiếp xúc.

+) Nếu \(d\left( {I,\Delta } \right) < R\)

Hay \({{|5 + m|} \over {\sqrt {10} }} < 2 \Leftrightarrow |5 + m| < 2\sqrt {10} \)

\( \Leftrightarrow  - 2\sqrt {10}  < 5 + m < 2\sqrt {10} \)

\(\Leftrightarrow  - 5 - 2\sqrt {10}  < m <  - 5 + 2\sqrt {10} \)

thì \(\Delta \) và (C) cắt nhau tại hai điểm phân biệt.

Loigiaihay.com


Bình chọn:
3.8 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.