Bài 21 trang 95 SGK Hình học 10 Nâng cao


Hỏi trong các mệnh đề sau , mệnh đề nào đúng?

Đề bài

Cho phương trình

\({x^2} + {y^2} + px + (p - 1)y = 0\)  (1)

Hỏi trong các mệnh đề sau , mệnh đề nào đúng?

a) (1) là phương trình của một đường tròn.

b) (1) là phương trình của một đường tròn đi qua gốc tọa độ.

c) (1) là phương trình của một đường tròn có tâm \(J\left( p; p-1\right)\)

d) (1) là phương trình của một đường tròn có tâm \(J\left( { - {p \over 2}; - {{p - 1} \over 2}} \right)\) và bán kính \(R = {1 \over 2}\sqrt {2{p^2} - 2p + 1} \) .

Lời giải chi tiết

Phương trình đường tròn có dạng: \({x^2} + {y^2} + 2ax + 2by + c = 0\) , với điều kiện: \({a^2} + {b^2} > c\) .

Ta có:

\(\eqalign{
& 2a = p;\,\,2b = p - 1;\,\,c = 0 \cr 
& \Rightarrow a = {p \over 2};\,\,b = {{p - 1} \over 2}  \cr} \)

Ta có: \({a^2} + {b^2} -c = \frac{{{p^2}}}{4} + \frac{{{{\left( {p - 1} \right)}^2}}}{4} \) \(= \frac{{{p^2} + {p^2} - 2p + 1}}{4} \) \(= \frac{1}{4}\left( {2{p^2} - 2p + 1} \right) > 0,\forall p\)

Do đó phương trình đã cho là phương trình đường tròn tâm \(J\left( { - \frac{p}{2}; - \frac{{p - 1}}{2}} \right)\) bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = \frac{1}{2}\sqrt {2{p^2} - 2p + 1} \)

Nên a, d đúng, c sai.

Ngoài ra, với x=0, y=0 thỏa mãn pt đường tròn nên b đúng.

Các mệnh đề đúng là: a), b), d).

Mệnh đề sai: c).

Loigiaihay.com


Bình chọn:
4.1 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí