 Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
                                                
                            Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
                         Bài 2. Căn bậc hai của số phức và phương trình bậc hai
                                                        Bài 2. Căn bậc hai của số phức và phương trình bậc hai
                                                    Bài 25 trang 199 SGK Đại số và Giải tích 12 Nâng cao>
Tìm các số thực b, c để phương trình
LG a
Tìm các số thực b, c để phương trình (với ẩn z): \({z^2} + bz + c = 0\) nhận \(z = 1 + i\) làm một nghiệm.
Phương pháp giải:
Phương trình \(f(z)=0\) nhận \(z=z_0\) làm nghiệm nếu \(f(z_0)=0\)
Lời giải chi tiết:
\(1 + i\) là một nghiệm của phương trình \({z^2} + bz + c = 0\) khi và chỉ khi
\({\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0\) \( \Leftrightarrow 1 + 2i - 1 + b + bi + c = 0\) \( \Leftrightarrow 2i + b + bi + c = 0\)
\( \Leftrightarrow b + c + \left( {2 + b} \right)i = 0\) \( \Leftrightarrow \left\{ \matrix{ b + c = 0 \hfill \cr 2 + b = 0 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{ b = - 2 \hfill \cr c = 2 \hfill \cr} \right.\)
LG b
Tìm các số thực a, b, c để phương trình (với ẩn z):
\({z^3} + a{z^2} + bz + c = 0\)
nhận \(z = 1 + i\) làm nghiệm và cũng nhận \(z = 2\) là nghiệm.
Lời giải chi tiết:
\(1 + i\) là một nghiệm của \({z^3} + a{z^2} + bz + c = 0\) khi và chỉ khi
\({\left( {1 + i} \right)^3} + a{\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0 \) \( \Leftrightarrow \left( {1 + 3i + 3{i^2} + {i^3}} \right) + a\left( {1 + 2i - 1} \right) \) \(+ b + bi + c = 0\) \( \Leftrightarrow \left( {1 + 3i - 3 - i} \right) + a.2i \) \(+ b + bi + c = 0\) \( \Leftrightarrow - 2 + 2i + 2ai + b + c + bi = 0\)
\(\Leftrightarrow \left( {b + c - 2} \right)+\left( {2 + 2a + b} \right)i = 0\)
\( \Leftrightarrow \left\{ \matrix{ b + c - 2 = 0\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr 2a + b + 2 = 0\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)
\(2\) là nghiệm của \({z^3} + a{z^2} + bz + c = 0\) khi và chỉ khi \(8 + 4a + 2b + c = 0\,\,\,\left( 3 \right)\)
Từ (1), (2), (3) ta có hệ: .\(\left\{ \matrix{ b + c = 2 \hfill \cr 2a + b = - 2 \hfill \cr 4a + 2b + c = - 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ a = - 4 \hfill \cr b = 6 \hfill \cr c = - 4 \hfill \cr} \right.\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            