Bài 19 trang 22 SGK Đại số và Giải tích 12 Nâng cao


Đề bài

Cho một tam giác đều \(ABC\) cạnh \(a\). Người ta dựng một hình chữ nhật \(MNPQ\) có cạnh \(MN\) nằm trên cạnh \(BC\), hai đỉnh \(P\) và \(Q\) theo thứ tự nằm trên hai cạnh \(AC\) và \(AB\) của tam giác. Xác định vị trí của điểm \(M\) sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó.

Lời giải chi tiết

Đặt \(BM = x\left( {0 < x < {a \over 2}} \right)\)

Gọi \(H\) là trung điểm \(BC\) ta có \(AH = {{a\sqrt 3 } \over 2}\)

\(\Delta BMQ = \Delta CNP\) \( \Rightarrow BM = NC = x\) \(\Rightarrow MN = a - 2x\)

\(QM//AH\) nên \({{QM} \over {AH}} = {{BM} \over {BH}} \) \(\Rightarrow QM = {{AH.BM} \over {BH}} = {{{{a\sqrt 3 } \over 2}.x} \over {{a \over 2}}} = x\sqrt 3 \)

Diện tích hình chữ nhật \(MNPQ\) là

\(S\left( x \right) = MN.QM = \left( {a - 2x} \right).x\sqrt 3  \) \(= \sqrt 3 \left( {ax - 2{x^2}} \right)\)

Ta tìm giá trị lớn nhất của \(S\left( x \right)\) trên khoảng \(\left( {0;{a \over 2}} \right)\)

Ta có : \(S'\left( x \right) = \sqrt 3 \left( {a - 4x} \right)\)

\(S'\left( x \right) = 0 \Leftrightarrow x = {a \over 4}\)

\(S\left( {{a \over 4}} \right) = {{\sqrt 3 } \over 8}{a^2}\)

Vậy \(S\left( x \right)\) đạt giá trị lớn nhất tại điểm \(x = {a \over 4}\) và giá trị lớn nhất của diện tích hình chữ nhật là: \(\mathop {\max \,\,\,S\left( x \right)}\limits_{x \in \left( {0;{a \over 2}} \right)}  = S\left( {{a \over 4}} \right) = {{\sqrt 3 } \over 8}{a^2}\)

Loigiaihay.com


Bình chọn:
3.9 trên 8 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài