Bài 13 trang 101 SBT Hình học 10 Nâng cao>
Giải bài tập Bài 13 trang 101 SBT Hình học 10 Nâng cao
Đề bài
Cho tam giác \(ABC\) có \(A(0 ; 0),\) \( B(2 ; 4),\) \( C(6 ; 0)\) và các điểm \(M\) trên cạnh \(AB, N\) trên cạnh \(BC, P\) và \(Q\) trên cạnh \(AC\) sao cho \(MNPQ\) là hình vuông. Tìm tọa độ các điểm \(M, N, P, Q.\)
Lời giải chi tiết
(h.97).
\(A(0 ; 0), C(6 ; 0) \Rightarrow A, C \in Ox \)
\( \Rightarrow P, Q \in Ox \)
\( \Rightarrow P = ({x_P} ; 0), Q = ({x_Q} ; 0)\) với \(0 < x_p < x_Q < 6.\)
Phương trình đường thẳng \(AB :y=2x;\)
Phương trình đường thẳng \(AC: y=0.\)
Gọi cạnh hình vuông là \(a\). Ta có
\( \dfrac{{MN}}{{AC}} = \dfrac{{BM}}{{BA}} \Rightarrow \dfrac{a}{6} = \dfrac{{BM}}{{BA}}\) (1).
Kẻ \(BH \bot AC\), suy ra \(BH=4\). Ta có
\( \dfrac{{MP}}{{BH}} = \dfrac{{AM}}{{AB}} \Rightarrow \dfrac{a}{4} = \dfrac{{AM}}{{AB}} \) (2).
Từ (1) và (2) suy ra :\( \dfrac{a}{6} + \dfrac{a}{4} = \dfrac{{BM}}{{AB}} + \dfrac{{AM}}{{AB}} = 1\). Do đó \(a = \dfrac{{12}}{5}\).Vậy \({y_M} = {y_N} = \dfrac{{12}}{5}\).
Do \(M \in AB\) nên \({y_M} = 2{x_M}\), suy ra \({x_M} = \dfrac{6}{5}, {x_P} = {x_M} = \dfrac{6}{5}\).
Vì \(PQ = {x_Q} - {x_P}\) nên \({x_Q} = {x_P} + a = \dfrac{6}{5} + \dfrac{{12}}{5} = \dfrac{{18}}{5}\).
Các điểm cần tìm là \(M\left( { \dfrac{6}{5} ; \dfrac{{12}}{5}} \right), P\left( { \dfrac{6}{5} ; 0} \right), \) \( Q\left( { \dfrac{{18}}{5} ; 0} \right), N\left( { \dfrac{{18}}{5} ; \dfrac{{12}}{5}} \right)\).
Loigiaihay.com
- Bài 12 trang 101 SBT Hình học 10 Nâng cao
- Bài 11 trang 101 SBT Hình học 10 Nâng cao
- Bài 10 trang 101 SBT Hình học 10 Nâng cao
- Bài 9 trang 101 SBT Hình học 10 Nâng cao
- Bài 8 trang 101 SBT Hình học 10 Nâng cao
>> Xem thêm