Bài 10 trang 101 SBT Hình học 10 Nâng cao


Giải bài tập Bài 10 trang 101 SBT Hình học 10 Nâng cao

Đề bài

Lập phương trình đường thẳng \(\Delta \) đi qua \(Q(2 ; 3)\) và cắt các tia \(Ox, Oy\) tại hai điểm \(M, N\) khác điểm \(O\) sao cho \(OM+ON\) nhỏ nhất.

Lời giải chi tiết

Giả sử \(M=(m ; 0), N=(0 ; n)\) với \(m, n >0\). Phương trình của \(\Delta \) là \( \dfrac{x}{m} +  \dfrac{y}{n} = 1\).

\(Q \in \Delta    \Rightarrow    \dfrac{2}{m} +  \dfrac{3}{n} = 1    \Rightarrow    n =  \dfrac{{3m}}{{m - 2}}\) (dễ thấy \(m \ne 2\)). Do \(n > 0\) nên \(m > 2.\)

Áp dụng bất đẳng thức cô-si, ta có

\(\begin{array}{l}OM + ON = m + n = m +  \dfrac{{3m}}{{m - 2}}\\= m - 2 +  \dfrac{6}{{m - 2}} + 5\\ \ge 2\sqrt {(m - 2) \dfrac{6}{{m - 2}}}  + 5 = 2\sqrt 6  + 5\end{array}\)

Dấu “=” xảy ra khi và chỉ khi \(m - 2 =  \dfrac{6}{{m - 2}}\) hay \(m = 2 + \sqrt 6 \) (do \(m > 0\)).

Suy ra \(n = 3 + \sqrt 6 \). Vậy \(OM+ON\) nhỏ nhất bằng \(2\sqrt 6  + 5\) khi \(m = 2 + \sqrt 6 \) và \(n = 3 + \sqrt 6 \). Khi đó phương trình của \(\Delta \) là \( \dfrac{x}{{2 + \sqrt 6 }} =  \dfrac{y}{{3 + \sqrt 6 }} = 1\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí